Advertisement

Rapid Prototyping to Produce POROUS SCAFFOLDS WITH CONTROLLED ARCHITECTURE for Possible use in Bone Tissue Engineering

  • Alexander Woesz

Keywords

Rapid Prototype Bone Tissue Engineering Bone Ingrowth Biphasic Calcium Phosphate Composite Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LeGeros, R. Z. (2002). Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orthop Relat Res, 395, 81–98.CrossRefGoogle Scholar
  2. 2.
    Doremus, R. H. (1992). Bioceramics. J Mater Sci, 27(2), 285–297CrossRefGoogle Scholar
  3. 3.
    Kannan, S., Balamurugan, A., Rajeswari, S. and Subbaiyan, M. (2002). Metallic implants - An approach for long term applications in bone related defects. Corrosion Reviews, 20(4–5), 339–358Google Scholar
  4. 4.
    Kenny, S. M. and Buggy, M. (2003) Bone cements and fillers: a review. J Mater Sci-Mater Med, 14(11), 923–938CrossRefGoogle Scholar
  5. 5.
    Teitelbaum, S. L., (2000). Bone resorption by osteoclasts. Science, 289(5484), 1504–1508CrossRefGoogle Scholar
  6. 6.
    Currey, J. D. (2002). Bones structure and mechanics. Princeton University Press, Princeton, N.JGoogle Scholar
  7. 7.
    Ben-Nissan, B. (2003). Natural bioceramics: from coral to bone and beyond. Cur Opin Sol State Mater Sci, 7(4–5), 283–288CrossRefGoogle Scholar
  8. 8.
    Lane, J. M., Tomin, E. and Bostrom, M. P. G. (1999). Biosynthetic bone grafting. Clin Orthop Relat Res, 367, S107–S117CrossRefGoogle Scholar
  9. 9.
    Pelker, R. R. and Friedlaender, G. E. (1987). Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am, 18(2), 235–239Google Scholar
  10. 10.
    Moore, W. R., Graves, S. E. and Bain, G. I. (2001). Synthetic bone graft substitutes. Aust N Z J of Surg, 71(6), 354–361Google Scholar
  11. 11.
    Mankin, H. J., Gebhardt, M. C., Jennings, L. C., Springfield, D. S. and Tomford, W. W. (1996). Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res, (324), 86–97CrossRefGoogle Scholar
  12. 12.
    Strong, D. M., Friedlaender, G. E., Tomford, W. W., Springfield, D. S., Shives, T. C., Burchardt, H., Enneking, W. F. and Mankin, H. J. (1996). Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop Relat Res, (326), 107–114CrossRefGoogle Scholar
  13. 13.
    Simonds, R. J., Holmberg, S. D., Hurwitz, R. L., Coleman, T. R., Bottenfield, S., Conley, L. J., Kohlenberg, S. H., Castro, K. G., Dahan, B. A., Schable, C. A., Rayfield, M. A. and Rogers, M. F. (1992). Transmission of human-immunodeficiency-virus type-1 from a seronegative organ and tissue donor. N Eng J Med, 326(11), 726–732CrossRefGoogle Scholar
  14. 14.
    Jensen, S., Aarboe, M., Pinholt, E., Hjorting-Hansen, E., Melsen, F. and Ruyter, I. (1996). Tissue reaction and material characteristics of four bone substitues. Int J Oral Maxillofac Implants, 11, 55–66Google Scholar
  15. 15.
    Ben-Nissan, B. (2003). Natural bioceramics: from coral to bone and beyond. Current Opinion in Solid State and Materials Science, 7(4–5), 283–288CrossRefGoogle Scholar
  16. 16.
    Kujala, S., Ryhänen, J., Danilov, A. and Tuukkanen, J. (2003). Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials, 24, 4691–4697CrossRefGoogle Scholar
  17. 17.
    Fujibayashi, S., Neo, M., Kim, H. M., Kokubo, T. and Nakamura, T. (2004). Osteoinduction of porous bioactive titanium metal. Biomaterials, 25(3), 443–450CrossRefGoogle Scholar
  18. 18.
    Oonishi, H., Yamamoto, M., Ishimaru, H., Tsuji, E., Kushitani, S., Aono, M. and Ukon, Y. (1989). The effect of hydroxyapatite coating on bone-growth into porous titanium-alloy implants. J Bone Joint Surg Br, 71(2), 213–216Google Scholar
  19. 19.
    Mahmood, J., Takita, H., Ojima, Y., Kobayashi, M., Kohgo, T. and Kuboki, Y. (2001). Geometric effect of matrix upon cell differentiation: BMP-induced osteogenesis using a new bioglass with a feasible structure. J Biochem, 129(1), 163–171Google Scholar
  20. 20.
    Oonishi, H., Kushitani, S., Yasukawa, E., Iwaki, H., Hench, L. L., Wilson, J., Tsuji, E. I. and Sugihara, T. (1997). Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res, (334), 316–325CrossRefGoogle Scholar
  21. 21.
    Schepers, E., Declercq, M., Ducheyne, P. and Kempeneers, R. (1991). Bioactive glass particulate material as a filler for bone-lesions. J Oral Rehabil, 18(5), 439–452CrossRefGoogle Scholar
  22. 22.
    Yuan, H. P., de Bruijn, J. D., Zhang, X. D., van Blitterswijk, C. A. and de Groot, K. (2001). Bone induction by porous glass ceramic made from bioglass (R) (45S5). J Biomed Mater Res, 58(3), 270–276CrossRefGoogle Scholar
  23. 23.
    Albee, F. H. and Morrison, H. F. (1920). Studies in bone growth: triple CaP as a stimulus to osteogenesis. Ann Surg, 71, 32–39CrossRefGoogle Scholar
  24. 24.
    Gauthier, O., Goyenvalle, E., Bouler, J. M., Guicheux, J., Pilet, P., Weiss, P. and Daculsi, G. (2001). Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci-Mater Med, 12(5), 385–390CrossRefGoogle Scholar
  25. 25.
    Frayssinet, P., Trouillet, J., Rouquet, N., Azimus, E. and Autefage, A. (1993). Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials, 14(6), 423–429Google Scholar
  26. 26.
    Kasten, P., Luginbühl, R., Griensven, M. v., Barkhausen, T., Krettek, C., Bohner, M. and Bosch, U. (2003). Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, ÿ-tricalcium phosphate and demineralized bone matrix. Biomaterials, 24, 2593–2603CrossRefGoogle Scholar
  27. 27.
    Yuan, H. P., Yang, Z., de Bruijn, J. D., de Groot, K. and Zhang, X. D. (2001). Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials, 22, 2617–2623CrossRefGoogle Scholar
  28. 28.
    Kuboki, Y., Takita, H., Kobayashi, D., Tsuruga, E., Inoue, M., Murata, M., Nagai, N., Dohi, Y. and Ohgushi, H. (1998). BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res, 39(2), 190–199CrossRefGoogle Scholar
  29. 29.
    Tsuruga, E., Takita, H., Itoh, H., Wakisaka, Y. and Kuboki, Y. (1997). Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem, 121(2), 317–324Google Scholar
  30. 30.
    Yuan, H. P., Kurashina, K., de Bruijn, J. D., Li, Y. B., de Groot, K. and Zhang, X. D. (1999). A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, 20(19), 1799–1806CrossRefGoogle Scholar
  31. 31.
    Vuola, J., Taurio, R., Göransson, H. and Asko-Seljavaara, S. (1998). Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis. Biomaterials, 19, 223–227CrossRefGoogle Scholar
  32. 32.
    Chang, B. S., Lee, C. K., Hong, K. S., Youn, H. J., Ryu, H. S., Chung, S. S. and Park, K. W. (2000). Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 21(12), 1291–1298CrossRefGoogle Scholar
  33. 33.
    Klawitter, J. (1979). A basic investigation of bone growth in porous materials. PhD Thesis, Clemson University, Clemson.Google Scholar
  34. 34.
    Gauthier, O., Bouler, J. M., Aguado, E., Pilet, P. and Daculsi, G. (1998). Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 19(1–3), 133–139CrossRefGoogle Scholar
  35. 35.
    Ducheyne, P. and Qiu, Q. (1999). Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 20(23–24), 2287–2303CrossRefGoogle Scholar
  36. 36.
    Gibson, L. J. and Ashby, M. F. (1997). Cellular solids (2nd ed). Cambridge University press, Cambridge.Google Scholar
  37. 37.
    Woesz, A., Stampfl, J. and Fratzl, P. (2004). Cellular solids beyond the apparent density - an experimental assessment of mechanical properties. Advanced Engineering Materials, 6(3), 134–138CrossRefGoogle Scholar
  38. 38.
    Hopkinson, N. (2005). Rapid manufacturing technology. Wiley & Sons, New York.Google Scholar
  39. 39.
    Gebhardt, A. (1996).Rapid Prototyping. Werkzeuge für die schnelle Produktentwicklung. Hanser, Fachbuchverlag.Google Scholar
  40. 40.
    Pham, D. T. and Dimov, S. S. (2001). Rapid manufacturing. Springer, London.Google Scholar
  41. 41.
    Stampfl, J. (2004). 3D-techiques in material science. Habilitationsschrift, Wien.Google Scholar
  42. 42.
    Leong, K. F., Cheah, C. M. and Chua, C. K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24(13), 2363–2378CrossRefGoogle Scholar
  43. 43.
    Ang, T. H., Sultana, F. S. A., Hutmacher, D. W., Wong, Y. S., Fuh, J. Y. H., Mo, X. M., Loh, H. T., Burdet, E. and Teoh, S. H. (2002). Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 20(1–2), 35–42Google Scholar
  44. 44.
    Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H. and Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res, 55(2), 203–216CrossRefGoogle Scholar
  45. 45.
    Kalita, S. J., Bose, S., Hosick, H. L. and Bandyopadhyay, A. (2003). Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 23(5), 611–620Google Scholar
  46. 46.
    Too, M. H., Leong, K. F., Chua, C. K., Du, Z. H., Yang, S. F., Cheah, C. M. and Ho, S. L. (2002). Investigation of 3D non-random porous structures by fused deposition modelling. International Journal of Advanced Manufacturing Technology, 19(3), 217–223Google Scholar
  47. 47.
    Woodfield, T. B. F., Malda, J., de Wijn, J., Peters, F., Riesle, J. and van Blitterswijk, C. A. (2004). Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 25(18), 4149–4161CrossRefGoogle Scholar
  48. 48.
    Chua, C. K., Leong, K. F., Tan, K. H., Wiria, F. E. and Cheah, C. M. (2004). Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci-Mater Med, 15(10), 1113–1121CrossRefGoogle Scholar
  49. 49.
    Antonov, E. N., Bagratashvili, V. N., Whitaker, M. J., Barry, J. J. A., Shakesheff, K. M., Konovalov, A. N., Popov, V. K. and Howdle, S. M. (2005). Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Advanced Materials, 17(3), 327–330CrossRefGoogle Scholar
  50. 50.
    Hao, L., Savalani, M. M., Zhang, Y., Tanner, K. E. and Harris, R. A. (2006). Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng [H], 220(H4), 521–531Google Scholar
  51. 51.
    Partee, B., Hollister, S. J. and Das, S. (2006). Selective laser sintering process optimization for layered manufacturing of CAPA (R) 6501 polycaprolactone bone tissue engineering scaffolds. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 128(2), 531–540CrossRefGoogle Scholar
  52. 52.
    Tan, K. H., Chua, C. K., Leong, K. F., Cheah, C. M., Cheang, P., Abu Bakar, M. S. and Cha, S. W. (2003). Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 24(18), 3115–3123CrossRefGoogle Scholar
  53. 53.
    Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, S. E., Hollister, S. J. and Das, S. (2005). Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23), 4817–4827CrossRefGoogle Scholar
  54. 54.
    Lorrison, J. C., Dalgarno, K. W. and Wood, D. J. (2005). Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering. J Mater Sci-Mater Med, 16(8), 775–781CrossRefGoogle Scholar
  55. 55.
    Hayashi, T., Maekawa, K., Tamura, M. and Hanyu, K. (2005). Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes. JSME International Journal Series A-Solid Mechanics And Material Engineering, 48(4), 369–375Google Scholar
  56. 56.
    Goodridge, R. D., Dalgarno, K. W. and Wood, D. J. (2006). Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 220(H1), 57–68CrossRefGoogle Scholar
  57. 57.
    Friedel, T., Travitzky, N., Niebling, F., Scheffler, M. and Greil, P. (2005). Fabrication of polymer derived ceramic parts by selective laser curing. Journal of the European Ceramic Society, 25(2–3), 193–197Google Scholar
  58. 58.
    Savalani, M. M., Hao, L. and Harris, R. A. (2006). Evaluation of CO2 and Nd: YAG lasers for the selective laser sintering of HAPEX (R). Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 220(2), 171–182Google Scholar
  59. 59.
    Leukers, B., Gulkan, H., Irsen, S. H., Milz, S., Tille, C., Schieker, M. and Seitz, H. (2005). Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci-Mater Med, 16(12), 1121–1124CrossRefGoogle Scholar
  60. 60.
    Seitz, H., Rieder, W., Irsen, S., Leukers, B. and Tille, C. (2005). Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B-Appl Biomater, 74B(2), 782–788CrossRefGoogle Scholar
  61. 61.
    Cooper, K. G. (2001). Rapid prototyping technology. Marcel Dekker, New York.Google Scholar
  62. 62.
    Yang, S. F., Leong, K. F., Du, Z. H. and Chua, C. K. (2002). The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng, 8(1), 1–11CrossRefGoogle Scholar
  63. 63.
    Mapili, G., Lu, Y., Chen, S. C. and Roy, K. (2005). Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B-Appl Biomat, 75B(2), 414–424CrossRefGoogle Scholar
  64. 64.
    Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. (2002). Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23), 4437–4447CrossRefGoogle Scholar
  65. 65.
    Landers, R., Pfister, A., Hubner, U., John, H., Schmelzeisen, R. and Mulhaupt, R. (2002). Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci-Mater Med, 37(15), 3107–3116Google Scholar
  66. 66.
    Li, J. P., de Wijn, J. R., Van Blitterswijk, C. A. and de Groot, K. (2006). Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials, 27(8), 1223–1235CrossRefGoogle Scholar
  67. 67.
    Pfister, A., Landers, R., Laib, A., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. (2004). Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. Journal of Polymer Science Part A-Polymer Chemistry, 42(3), 624–638CrossRefGoogle Scholar
  68. 68.
    Chu, T. M. G., Halloran, J. W., Hollister, S. J. and Feinberg, S. E. (2001). Hydroxyapatite implants with designed internal architecture. J Mater Sci-Mater Med, 12(6), 471–478CrossRefGoogle Scholar
  69. 69.
    Chu, T. M. G., Hollister, S. J., Halloran, J. W., Feinberg, S. E. and Orton, D. G. (2002). Manufacturing and characterization of 3-D hydroxyapatite bone tissue engineering scaffolds. Reparative Medicine: Growing Tissues and Organs, 961, 114–117Google Scholar
  70. 70.
    Chu, T. M. G., Orton, D. G., Hollister, S. J., Feinberg, S. E. and Halloran, J. W. (2002). Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials, 23(5), 1283–1293CrossRefGoogle Scholar
  71. 71.
    Stampfl, J., Fouad, H., Seidler, S., Liska, R., Schwager, F., Woesz, A. and Fratzl, P. (2004). Fabrication and moulding of cellular materials by rapid prototyping. International Journal of Materials & Product Technology, 21(4), 285–296CrossRefGoogle Scholar
  72. 72.
    Woesz, A., Rumpler, A., Stampfl, J., Varga, F., Fratzl-Zelman, N., Roschger, P., Klaushofer, K. and Fratzl, P. (2005). Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 25(2), 181–186Google Scholar
  73. 73.
    Chen, V. J., Smith, L. A. and Ma, P. X. (2006). Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials, 27(21), 3973–3979CrossRefGoogle Scholar
  74. 74.
    Lee, M., Dunn, J. C. Y. and Wu, B. M. (2005). Scaffold fabrication by indirect three-dimensional printing. Biomaterials, 26(20), 4281–4289CrossRefGoogle Scholar
  75. 75.
    Limpanuphap, S. and Derby, B. (2002). Manufacture of biomaterials by a novel printing process. J Mater Sci-Mater Med, 13(12), 1163–1166Google Scholar
  76. 76.
    Manjubala, I., Woesz, A., Pilz, C., Rumpler, M., Fratzl-Zelman, N., Roschger, P., Stampfl, J. and Fratzl, P. (2005). Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J Mater Sci-Mater Med, 16(12), 1111–1119CrossRefGoogle Scholar
  77. 77.
    Wilson, C. E., de Bruijn, J. D., van Blitterswijk, C. A., Verbout, A. J. and Dhert, W. J. A. (2004). Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J Biomed Mater Res A, 68A(1), 123–132CrossRefGoogle Scholar
  78. 78.
    Kalita, S. J., Bose, S., Bandyopadhyay, A. and Hosick, H. L. (2002). Porous calcium aluminate ceramics for bone-graft applications. Journal of Materials Research, 17(12), 3042–3049Google Scholar
  79. 79.
    Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R. and Trehan, A. (2004). Poly-epsilon-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278(1), 1–23Google Scholar
  80. 80.
    Cao, T., Ho, K. H. and Teoh, S. H. (2003). Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng, 9, S103–S112CrossRefGoogle Scholar
  81. 81.
    Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185CrossRefGoogle Scholar
  82. 82.
    Jones, A. C., Milthorpe, B., Averdunk, H., Limaye, A., Senden, T. J., Sakellariou, A., Sheppard, A. P., Sok, R. M., Knackstedt, M. A., Brandwood, A., Rohner, D. and Hutmacher, D. W. (2004). Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials, 25(20), 4947–4954CrossRefGoogle Scholar
  83. 83.
    Rai, B., Teoh, S. H., Ho, K. H., Hutmacher, D. W., Cao, T., Chen, F. and Yacob, K. (2004). The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds. Biomaterials, 25(24), 5499–5506CrossRefGoogle Scholar
  84. 84.
    Rai, B., Teoh, S. H., Hutmacher, D. W., Cao, T. and Ho, K. H. (2005). Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials, 26(17), 3739–3748CrossRefGoogle Scholar
  85. 85.
    Yang, S. F., Leong, K. F., Du, Z. H. and Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng, 7(6), 679–689CrossRefGoogle Scholar
  86. 86.
    Kricheldorf, H. R. and KreiserSaunders, I. (1996). Polylactides - Synthesis, characterization and medical application. Macromolecular Symposia, 103, 85–102Google Scholar
  87. 87.
    Mikos, A. G., Lyman, M. D., Freed, L. E. and Langer, R. (1994). Wetting of Poly(L-Lactic Acid) and Poly(Dl-Lactic-Co-Glycolic Acid) foams for tissue-culture. Biomaterials, 15(1), 55–58CrossRefGoogle Scholar
  88. 88.
    Xiong, Z., Yan, Y. N., Zhang, R. J. and Sun, L. (2001). Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scripta Materialia, 45(7), 773–779CrossRefGoogle Scholar
  89. 89.
    Stampfl, J., Woss, A., Seidler, S., Fouad, H., Pisaipan, A., Schwager, F. and Liska, R. (2004). Water soluble, photocurable resins for rapid prototyping applications. Macromolecular Symposia, 217, 99–107CrossRefGoogle Scholar
  90. 90.
    Sachlos, E., Reis, N., Ainsley, C., Derby, B. and Czernuszka, J. T. (2003). Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials, 24(8), 1487–1497CrossRefGoogle Scholar
  91. 91.
    Taylor, P. M., Sachlos, E., Dreger, S. A., Chester, A. H., Czernuszka, J. T. and Yacoub, M. H. (2006). Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping. Biomaterials, 27(13), 2733–2737CrossRefGoogle Scholar
  92. 92.
    Levy, R. A., Chu, T. M. G., Halloran, J. W., Feinberg, S. E. and Hollister, S. (1997). CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant. American Journal of Neuroradiology, 18(8), 1522–1525Google Scholar
  93. 93.
    Keaveny, T. M., Morgan, E. F., Niebur, G. L. and Yeh, O. C. (2001). Biomechanics of trabecular bone. Annual Review of Biomedical Engineering, 3, 307–333CrossRefGoogle Scholar
  94. 94.
    Roschger, P., Grabner, B. M., Rinnerthaler, S., Tesch, W., Kneissel, M., Berzlanovich, A., Klaushofer, K. and Fratzl, P. (2001). Structural development of the mineralized tissue in the human L4 vertebral body. Journal of Structural Biology, 136(2), 126–136CrossRefGoogle Scholar
  95. 95.
    Roschger, P., Gupta, H. S., Berzanovich, A., Ittner, G., Dempster, D. W., Fratzl, P., Cosman, F., Parisien, M., Lindsay, R., Nieves, J. W. and Klaushofer, K. (2003). Constant mineralization density distribution in cancellous human bone. Bone, 32(3), 316–323CrossRefGoogle Scholar
  96. 96.
    Young, A. C., Omatete, O. O., Janney, M. A. and Menchhofer, P. A. (1991). Gelcasting of alumina. Journal of the American Ceramic Society, 74(3), 612–618CrossRefGoogle Scholar
  97. 97.
    Omatete, O. O., Janney, M. A. and Nunn, S. D. (1997). Gelcasting: From laboratory development toward industrial production. Journal of the European Ceramic Society, 17(2–3), 407–413CrossRefGoogle Scholar
  98. 98.
    Omatete, O. O., Janney, M. A. and Strehlow, R. A. (1991). Gelcasting - a new ceramic forming process. American Ceramic Society Bulletin, 70(10), 1641–1649Google Scholar
  99. 99.
    Janney, M. A., Nunn, S. D., Walls, C. A., Omatete, O. O., Ogle, R. J., Kirby, G. H. and McMillan, A. D. (1998). Gelcasting. In: Rahaman, M. N. (ed.) The handbook of ceramic engineering. Marcel Dekker, New York.Google Scholar
  100. 100.
    Ortega, F. S., Valenzuela, F. A. O., Scuracchio, C. H. and Pandolfelli, V. C. (2003). Alternative gelling agents for the gelcasting of ceramic foams. Journal of the European Ceramic Society, 23(1), 75v–80CrossRefGoogle Scholar
  101. 101.
    Ortega, F. S., Sepulveda, P. and Pandolfelli, V. C. (2002). Monomer systems for the gelcasting of foams. Journal of the European Ceramic Society, 22(9–10), 1395–1401CrossRefGoogle Scholar
  102. 102.
    Kurihara, N., Ikeda, K., Hakeda, Y., Tsunoi, M., Maeda, N. and Kumegawa, M. (1984). Effect of 1,25-Dihydroxyvitamin-D3 on Alkaline-Phosphatase activity and collagen-synthesis in osteoblastic cells, Clone Mc3t3-E1. Biochemical and Biophysical Research Communications, 119(2), 767–771CrossRefGoogle Scholar
  103. 103.
    Rumpler, M., Woesz, A., Varga, F., Manjubala, I., Klaushofer, K. and Fratzl, P. (2007). Three-dimensional growth behaviour of osteoblasts on biomimetic hydroxylapatite scaffolds. Journal of Biomedical Materials Research Part A, 81A(1), 40–50CrossRefGoogle Scholar
  104. 104.
    Woesz, A., Rumpler, M., Manjubala, I., Pilz, C., Varga, F., Stampfl, J. and Fratzl, P. (2005). The influence of the thermal treatment of hydroxyapatite scaffolds on the physical properties and the bone cell ingrowth behaviour. Mater Res Soc Symp Proc, 874, L 7.9.1Google Scholar
  105. 105.
    Ashby, M. F., Gibson, L. J., Wegst, U. and Olive, R. (1995). The mechanical-properties of natural materials.1. Material property charts. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 450(1938), 123–140.Google Scholar
  106. 106.
    Tanner, K. E., Downes, R. N. and Bonfield, W. (1994). Clinical-applications of hydroxyapatite reinforced materials. British Ceramic Transactions, 93(3), 104–107Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alexander Woesz

There are no affiliations available

Personalised recommendations