Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, T.H., Sultana, F.S.A, Hutmacher, D.W, Wong, Y.S, Fuh, J.Y.H, Mo, X.M, Loh, H.T, Burdet, E. and Teoh, S.H, Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispersing system, Mater Sci Eng, C20, 35–42, 2002

    Google Scholar 

  • Bártolo, P, Mendes, A. and Jardini, A, Bio-prototyping, in Design and Nature II, Edited by M.W. Collins and C.A. Brebbia, WIT Press, Southampton, UK, 535–543, 2004

    Google Scholar 

  • Bártolo, P.J. and Mitchell, G, Stereo-thermal-lithography, Rapid Prototyping J, 9(3), 150–156, 2003

    Article  Google Scholar 

  • Bártolo, P.J, State of the art of solid freeform fabrication for soft and hard tissue engineering, in Design and nature III: comparing design in nature with science and engineering, 233–243, 2006.

    Google Scholar 

  • Bertsch, A, Jiguet, S, Bernhards, P. and Renaud, P, Microstereolithography: a review. Mat Res Soc Symp Proc, 758: LL.1.1.1–13, 2003.

    Google Scholar 

  • Boland, T, Tao, X, Damon, B.J, Manley, B. and Kesari, P, Drop-on-demand printing of cells and materials for designer tissue constructs, Mater Sci Eng: C 27(3), 372–376, 2007.

    Article  Google Scholar 

  • Carvalho, C, Landers, R, Mulhaupt, R, Hubner, U. and Schmelzeisen, R, Fabrication of soft and hard biocompatible scaffolds using 3D-Bioplotting, in Virtual Modelling and Rapid Manufacturing – Advanced Research in Virtual and Rapid Prototyping, Edited by P.H. Bártolo et al. Taylor & Francis, London, UK, 2005.

    Google Scholar 

  • Chu, T.-M.G, Halloran, J.W, Hollister, S.J. and Feinberg, S.E, Hydroxyapatite implants with designed internal architecture, J Mater Sci: Mater Med, 12, 471–478, 2001.

    Google Scholar 

  • Cooke, M.N, Fisher, J.P, Dean, D, Rimnac, C, Mikos, A.G, Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth, J Biomed Mater Res Part B: Appl Biomater, 64B, 65–69, 2002

    Article  Google Scholar 

  • Crump, S.S, Apparatus and method for creating three-dimensional objects, US Pat. 5121329, 1989

    Google Scholar 

  • Fischer, J.P, Dean, D, Engel, P.S, Mikos, A, Photoinitiated polymerization of biomaterials, Annu Rev Mater Res, 31, 171–181, 2001.

    Article  Google Scholar 

  • Freyman, T.M, Yannas, I.V. and Gibson, L.J, Cellular materials as porous scaffolds for tissue engineering, Progress in Mate Sci, 46, 273–282, 2001.

    Article  Google Scholar 

  • Fuchs, J.R, Nasseri, B.A. and Vacanti, J.P, Tissue engineering: a 21st century solution to surgical reconstruction, Ann Thorac Surg, 72, 577–581, 2001.

    Article  Google Scholar 

  • Gomes, M.E. and Reis, R.L, Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 Systems for temporary replacement and advanced tissue regeneration, Int Materials Rev, 49, 274–285, 2004.

    Article  Google Scholar 

  • Griffith, M.L. and Halloran, J.W, Freeform fabrication of ceramics via stereolithography, J Am Ceram Soc, 79, 2601–2608, 1996.

    Article  Google Scholar 

  • Ho, M.H, Kuo, P.Y, Hsieh, H.J, Hsien, T.Y, Hou, L.T, Lai, J.Y. and Wang, D.W, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomaterials, 25, 129–138, 2004.

    Article  Google Scholar 

  • Hutmacher, D.W, Schantz, T, Zein, I, Ng, K.W, Teoh, S.H. and Tan, K.C, Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modelling, J Biomed Mater Res, 55, 203–216, 2001.

    Article  Google Scholar 

  • Hynes, R.O, Integrins, versatility, modulation, and signalling in cell adhesion, Cell, 69, 11–25, 1992.

    Article  Google Scholar 

  • Kim, S.S, Utsunomiya, H, Koski, J.A, Wu, B.M, Cima, M.J, Sohn, J, Mukai, K, Griffith, L.G. and Vacanti, J.P, Survival and function of hepatocytes o a novel three-dimensional synthetic biodegradable polymer scaffolds with an intrinsic network of channels, Ann Surg, 228, 8–13, 1998.

    Article  Google Scholar 

  • Koh, Y.-H, Jun, I.-K. and Kim, H.-E, Fabrication of poly(ε-caprolactone)/hydroxyapatite scaffold using rapid direct deposition, Materials Letters, 60, 1184–1187, 2006.

    Article  Google Scholar 

  • Kowata, S. and Sun, H.B, Two-photon photopolymerization as a tool for making micro-devices, Appl Surf Sci 208/209, 153–158, 2003.

    Article  Google Scholar 

  • Lam, C.X.F, Mo, X.M, Teoh, S.H. and Hutmacher, D.W, Scaffold development using 3D printing with a starch-based polymer, Mater Sci Eng, 20, 49–56, 2002.

    Article  Google Scholar 

  • Langer, R, Tissue engineering: a new field and its challenges, Pharm Res, 14, 840–841, 1997.

    Article  Google Scholar 

  • Langer, R. and Vacanti, J.P, Tissue engineering, Science, 260, 920–926, 1993.

    Article  Google Scholar 

  • Lee, G. and Barlow, J.W, Selective laser sintering of bioceramic materials for implants, Proceedings of the ‘96 SFF Symposium, Austin, TX, August 12–14, 1996.

    Google Scholar 

  • Lemercier, G, Mulatier, J.C, Martineau, C, Anémian, R, Andraud, C, Wang, I, Stéphan, O, Amari, N. and Baldeck, P, Two-photon absorption: from optical limiting to 3D microfabrication, Comptes Rendus Chimie, 8, 1308–1316, 2005.

    Article  Google Scholar 

  • Leong, K.F, Cheah, C.M. and Chua, C.K, Solid freeform fabrication of the three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials, 24, 2363–2378, 2003

    Article  Google Scholar 

  • Leukers, B, Gulkan, H, Irsen, S.H, Milz, S, Tille, C, Schieker, M. and Seitz, H, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing, J Mater Sci Mater Med, 16, 1121–1124, 2005.

    Article  Google Scholar 

  • Levy, R.A, Chu, T.G.M, Holloran, J.W, Feinberg, S.E. and Hollister, S, CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant, Am J Neuroradiol, 18, 1522–1525, 1997.

    Google Scholar 

  • Limpanuphap, S. and Derby, B, Manufacture of biomaterials by a novel printing process, J Mater Sci Mater Med, 13, 1163–1166, 2002.

    Article  Google Scholar 

  • Mahajan, H. P, Evaluation of chitosan gelatine complex scaffolds for articular cartilage tissue engineering, MSc Thesis, Mississipi State University, USA, 2005.

    Google Scholar 

  • Marler, J.J, Upton, J, Langer, R. and Vacanti, J.P, Transplantation of cells in matrices for tissue regeneration, Adv Drug Del Rev, 33, 165–182, 1998.

    Article  Google Scholar 

  • Matsuda, T. and Mizutani, M, Liquid acrylate-endcapped poly(e-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs, J Biomed Mater Res, 62, 395–403, 2002.

    Article  Google Scholar 

  • Miranda, P, Saiz, E, Gryn, K. and Tomsia, A.P, Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomaterialia, 2, 457–466, 2006.

    Article  Google Scholar 

  • Mironov, V, Boland, T, Trusk, T, Forgacs, G. and Markwald, R.R, Organ printing: computer-aided jet-based 3D tissue engineering, Trends Biotechnol, 21, 157–161, 2003.

    Article  Google Scholar 

  • Mooney, D.J, Baldwin, D.F, Suh, N.P, Vacanti, J.P. and Langer, R, Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials, 17, 1417–1422, 1996.

    Article  Google Scholar 

  • Moroni, L, Schotel, R, Sohier, J, Wijn, J.R. and Blitterswijk, C.A, Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness, Biomaterials, 27, 5918–5926, 2006.

    Article  Google Scholar 

  • Nathan, C. and Sporn, M, Cytokines in context, J Cell Biol, 113, 981–986, 1991.

    Article  Google Scholar 

  • O’Brien, F.J, Harley, B.A, Llanas, I.V. and Gibson, L.J, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, 26, 433– 441, 2005.

    Article  Google Scholar 

  • Pardo, L, Wilson, W.C. and Boland, T, Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method, Langmuir, 19, 1462–1466, 2003.

    Article  Google Scholar 

  • Park, A, Wu, B. and Griffith, L.G, Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion, J Biomater Sci-Polym E, 9, 89–110, 1998.

    Article  Google Scholar 

  • Pfister, A, Landers, R, Laib, A, Hübner, U, Schmelzeisen, R, Mülhaupt, Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing, Journal of Applied Polymer Science Part A: Polymer Chemistry, 42, 624–638, 2004.

    Article  Google Scholar 

  • Popov, V.K, Antonov, E.N, Bagratashvili, B.N, Konovalov, A.N. and Howdle, S.M, Selective laser sintering of 3-D biodegradable scaffolds for tissue engineering, Mat Res Soc Symp Proc, EXS-1, F5.4.1–F.5.4.3, 2004.

    Google Scholar 

  • Reignier, J. and Huneault, M.A, Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching, Polymer, 47, 4703–4717, 2006.

    Article  Google Scholar 

  • Sachlos, E, Reis, N, Ainsley, C, Derby, B. and Czernuszka, J.T, Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication, Biomaterials, 24, 1487–1497, 2003.

    Article  Google Scholar 

  • Sachs, E.M, Haggerty, J.S, Cima, M.S. and Williams, P.A, Three-dimensional printing techniques, US Pat. 5204055, 1989.

    Google Scholar 

  • Saiz, E, Gremillard, L, Menendez, G, Miranda, P, Gryn, K and Tomsia, A.P, Preparation of porous hydroxyapatite scaffolds, Materials Science and Engineering C, 27, 546–550, 2007.

    Article  Google Scholar 

  • Saunders, R, Derby, B, Gough, J. and Reis, N, Ink-jet printing of human cells, Mat Res Soc Symp Proc, EXS-1, F.6.3.1–F.6.3.3, 2004.

    Google Scholar 

  • Skalak, R. and Fox, C.F, Tissue engineering, Alan R. Liss, New York, 1988.

    Google Scholar 

  • Tabata, Y, Recent progress in tissue engineering, Drug Discov Today, 6, 483–487, 2001.

    Article  Google Scholar 

  • Taboas, J.M, Maddox, R.D, Krebsbach, P.H. and Hollister, S.J, Indirect solid free form fabrication of local and global porous biomimetic and composite 3D polymer-ceramic scaffolds, Biomaterials, 24, 181–194, 2003.

    Article  Google Scholar 

  • Tellis, B.C, Szivek, J.A, Bliss, C.L, Margolis, D.S, Vaidyanathan, R.K. and Calvert, P, Trabecular scaffolds created using micro CT guided fused deposition modeling, Materials Science and Engineering C (2007).

    Google Scholar 

  • Tormen, M, Businaro, L, Altissimo, M, Romanato, F, Cabrini, S, Perennes, F, Proitti, R, Sun, H.B, Kawata, S, Fabrizio, E.D., 3D patterning by means of nanoimprinting, X-ray and two-photon lithography, Microelectronic Engineering, 73/74, 535–541 2004.

    Article  Google Scholar 

  • Vozzi, G, Flaim, C, Ahluwalia, A. and Bhatia, S, Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition, Biomaterials, 24, 2533–2540, 2003.

    Article  Google Scholar 

  • Wang, F, Shor, L, Darling, A, Khalil, S, Güçeri, S. and Lau, A, Precision deposition and characterization of cellular poly-e-caprolactone tissue scaffolds, Rapid Prototyping J, 10, 42–49, 2004.

    Article  Google Scholar 

  • Wei, G, Jin, Q, Giannobile, W.V. and Ma, P.X, The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres, Biomaterials, 2087–2096, 2007.

    Google Scholar 

  • Whang, K, Thomas, C.H, Healy, K.E. and Nuber, G, A novel method to fabricate bioabsorbable scaffolds, Polymer, 36, 837–842, 1995.

    Article  Google Scholar 

  • Williams, J.M, Adewunmi, A, Schek, R.M, Flanagan, C.L, Krebsbach, P.H, Feinberg, S.E, Hollister, S.J. and Das, S, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials, 26, 4817–4827, 2005.

    Article  Google Scholar 

  • Woodfield, T.B.F, Malda, J., de Wijn, J, Péters, F, Riesle, J. and van Blitterswijk, C.A, Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique, Biomaterials, 25, 4149–4161, 2004.

    Article  Google Scholar 

  • Xiong, Z, Yan, Y. and Zhang, R. and Sun, L, Fabrication of porous poly(L-lactide acid) scaffolds for bone tissue engineering via precise extrusion, Scripta Materialia, 45, 773–779, 2001.

    Article  Google Scholar 

  • Xiong, Z, Yan, Y, Zhang, R. and Wang, X, Organism manufacturing engineering based on rapid prototyping principles, Rapid Prototyping J 11(3), 160–166, 2005.

    Article  Google Scholar 

  • Yan, Y, Wu, R. and Zhang, R, Biomaterial forming research using RP technology, Rapid Prototyping J, 9, 142–149, 2003a.

    Article  Google Scholar 

  • Yan, Y, Zhang, R. and Lin, F, Research and applications on bio-manufacturing, Proceedings of the 1st International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 2003.

    Google Scholar 

  • Zein, I, Hutmacher, D.W, Tan, K.C. and Teoh, S.H, Fused deposition modeling of novel scaffolds architectures for tissue engineering applications, Biomaterials, 23, 1169–1185, 2002.

    Article  Google Scholar 

  • Zeltinger, J, Sheerwood, J.K, Graham, D.M, Mueller, R. and Griffith, L.G, Effects of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Engineering, 7(5), 557–572, 2001.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bártolo, P.J., Almeida, H.A., Rezende, R.A., Laoui, T., Bidanda, B. (2008). Advanced Processes to Fabricate Scaffolds for Tissue Engineering. In: Bidanda, B., Bártolo, P. (eds) Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68831-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68831-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33429-5

  • Online ISBN: 978-0-387-68831-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics