Skip to main content

Computational Design and Simulation of Tissue Engineering Scaffolds

  • Chapter
Virtual Prototyping & Bio Manufacturing in Medical Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration.Biomaterials 27:3964–3972

    Article  Google Scholar 

  • Anderson ARA, Chaplain MAJ (1998) Continous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biology 60:857–900

    Article  MATH  Google Scholar 

  • Aoubiza B, Crolet JM, Meunier A (1996) On the mechanical characterization of compact bone structure using the homogenization theory. J Biomech 29:1539–1547

    Google Scholar 

  • Bendsoe M, Guedes JM, Plaxton S, Taylor JE (1996) Optimization of structure and material properties composed of softening material. Int J Solids Structures 33:1799–1813

    Article  MathSciNet  Google Scholar 

  • Göpferich A (1997) Polymer bulk erosion. Macromolecules 26:2598–2604

    Article  Google Scholar 

  • Göpferich A, Langer R (1993) Modeling of polymer erosion. Macromolecules 26:4105–4112

    Article  Google Scholar 

  • Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite-element methods. Com Meth App Mech Eng 83:143–198

    Article  MATH  MathSciNet  Google Scholar 

  • Guest JK, Prevost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Structures 43:7028–7047

    Article  MATH  Google Scholar 

  • Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839

    Google Scholar 

  • Hollister SJ, Kikuchi N (1992) A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech 10:73–95

    Article  MATH  Google Scholar 

  • Hollister SJ, Brennan JM, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27:433–444

    Article  Google Scholar 

  • Hollister SJ, Levy RA, Chu TM, Halloran JW, Feinberg SE (2000) An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 29:67–71

    Article  Google Scholar 

  • Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103

    Article  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  Google Scholar 

  • Hollister SJ, Lin CY (2007) Computational design of tissue engineering scaffolds. Com. Meth App Mech Eng 196: 2991–2998

    Article  MATH  Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  Google Scholar 

  • Kelly DJ, Prendergast PJ (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38:1413–1422

    Article  Google Scholar 

  • Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519

    Article  Google Scholar 

  • Lin CY, Kikuchi N, Hollister SJ (2004a) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:623–636

    Article  Google Scholar 

  • Lin CY, Hsiao CC, Chen PQ, Hollister SJ (2004b) Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine 29:1747–1754

    Article  Google Scholar 

  • Lin CY, Lin CY, Hollister, SJ (2004c) A New Approach For Designing Biodegradable Bone Tissue Augmentation Devices By Using Degradation Topology Optimization, Proceedings of the 8th World Multiconference on Systemics Cybernetics and Informatics

    Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer, Berlin

    MATH  Google Scholar 

  • Sigmund O (1994) Construction of materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Structures 31:2313–2329

    Article  MATH  MathSciNet  Google Scholar 

  • Sun W, Darling A, Starly B, Nam J (2004a) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47

    Google Scholar 

  • Sun W, Starly B, Darling A, Gomez C. (2004b) Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 39:49–58

    Article  Google Scholar 

  • Wettergreen MA, Bucklen BS, Sun W, Liebschner MA (2005) Computer-aided tissue engineering of a human vertebral body. Ann Biomed Eng 33:1333–1343

    Article  Google Scholar 

  • Yin L, Elliot DM (2005) A homogenization model of the annulus. J Biomech 38:1674–1684

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hollister, S.J., Lin, CY., Kang, H., Adachi, T. (2008). Computational Design and Simulation of Tissue Engineering Scaffolds. In: Bidanda, B., Bártolo, P. (eds) Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68831-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68831-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33429-5

  • Online ISBN: 978-0-387-68831-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics