CAD Assembly Process for Bone Replacement Scaffolds in Computer-Aided Tissue Engineering

  • M. A. Wettergreen
  • B. S. Bucklen
  • M. A. K. Liebschner
  • W. Sun


Trabecular Bone Topology Optimization Load Transfer Unit Cube Regular Polyhedron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behravesh E, Timmer MD, Lemoine JJ, Liebschner MA, Mikos AG (2002) Evaluation of the in vitro degradation of macroporous hydrogels using gravimetry, confined compression testing, and microcomputed tomography. Biomacromolecules 3(6):1263–1270.CrossRefGoogle Scholar
  2. 2.
    Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–124CrossRefGoogle Scholar
  3. 3.
    Agrawal CM, McKinney JS, Lanctot D, Athanasiou KA (2000) Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21(23):2443–2452CrossRefGoogle Scholar
  4. 4.
    Fisher JP, Holland TA, Dean D, Engel PS, Mikos AG (2001) Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed 12(6): 673–687CrossRefGoogle Scholar
  5. 5.
    Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7(5): 557–572CrossRefGoogle Scholar
  6. 6.
    Nauman EA, Fong KE, Keaveny TM (1999) Dependence of intertrabecular permeability on flow direction and anatomic site. Ann Biomed Eng 27(4):517–524CrossRefGoogle Scholar
  7. 7.
    Buckwalter, JA, Hunziker EB, Orthopaedics. (1996) Healing of bones, cartilages, tendons, and ligaments: a new era. Lancet 348(Suppl 2):sII18Google Scholar
  8. 8.
    Widmer MS, Gupta PK, Lu LC, Meszlenyi RK, Evans GRD, Brandt K et al (1998) Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 19(21):1945–1955CrossRefGoogle Scholar
  9. 9.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefGoogle Scholar
  10. 10.
    Hasirci V, Lewandrowski K, Gresser JD, Wise DL, Trantolo DJ (2001) Versatility of biodegradable biopolymers: degradability and an in vivo application. J Biotechnol 86(2): 135–150CrossRefGoogle Scholar
  11. 11.
    Holland TA, Tessmar JKV, Tabata Y, Mikos AG (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94(1):101–114CrossRefGoogle Scholar
  12. 12.
    Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ (2003) Regulating bone formation via controlled scaffold degradation. J Dent Res 82(11):903–908Google Scholar
  13. 13.
    Cheah CM, Chua CK, Leong KF, Cheong CH, Naing MW (2004) Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. Tissue Eng 10(3–4):595–610CrossRefGoogle Scholar
  14. 14.
    Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5): 623–636CrossRefGoogle Scholar
  15. 15.
    Mattheck C (1994) Design in nature. Interdisciplin Sci Rev 19(4):298–314Google Scholar
  16. 16.
    Mattheck C, Bethge K, Tesari I, Scherrer M, Kraft O (2004) Is there a universal optimum notch shape? Materialwissenschaft Und Werkstofftechnik 35(9):582–586CrossRefGoogle Scholar
  17. 17.
    Mullender M, van Rietbergen B, Ruegsegger P, Huiskes R (1998) Effect of mechanical set point of bone cells on mechanical control of trabecular bone architecture. Bone 22(2): 125–31CrossRefGoogle Scholar
  18. 18.
    Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42(1):14–21CrossRefGoogle Scholar
  19. 19.
    Mullender MG and Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13(4):503–512CrossRefGoogle Scholar
  20. 20.
    Frost HM (1999) Why do bone strength and “mass“ in aging adults become unresponsive to vigorous exercise? Insights of the Utah paradigm. J Bone Miner Metab 17(2):90–97CrossRefMathSciNetGoogle Scholar
  21. 21.
    Marks SC, Cielinski MJ, Sundquist KT (1996) Bone surface morphology reflects local skeletal metabolism. Microsc Res Tech 33(2):121–127CrossRefGoogle Scholar
  22. 22.
    Bucklen B, Wettergreen M, Liebschner MA (2005) Mechanical aspects of tissue engineering. Seminars in Plastic Surgery 19(3):217–228CrossRefGoogle Scholar
  23. 23.
    Niebur GL, Yuen JC, Burghardt AJ, Keaveny TM (2001) Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions. J Biomech 34(5):699–706CrossRefGoogle Scholar
  24. 24.
    Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333CrossRefGoogle Scholar
  25. 25.
    Nicholson, PHF, Cheng XG, Lowet G, Boonen S, Davie, MWJ, Dequeker J et al (1997) Structural and material mechanical properties of human vertebral cancellous bone. Med Eng Phys 19(8):729–737CrossRefGoogle Scholar
  26. 26.
    Wettergreen M, Bucklen B, Starly B, Yuksel E, Sun W, Liebschner MA (2005) Creation of a unit block library of architectures for use in assembled scaffold engineering. Computer-Aided Des 37(11):1141–1149CrossRefGoogle Scholar
  27. 27.
    Wettergreen M, Bucklen B, Sun W, Liebschner MA (2005) Computer-aided tissue engineering of a human vertebral body. Ann Biomed Eng 33(10):1333–1343CrossRefGoogle Scholar
  28. 28.
    Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24(1):181–194CrossRefGoogle Scholar
  29. 29.
    Yang S, Leong KF, Du Z, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11CrossRefGoogle Scholar
  30. 30.
    Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8): 1487–1497CrossRefGoogle Scholar
  31. 31.
    Griffith LG (2002) Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann NY Acad Sci 961:83–95Google Scholar
  32. 32.
    Simon JL, Roy TD, Parsons JR, Rekow ED, Thompson VP, Kemnitzer J et al (2003) Engineered cellular response to scaffold architecture in a rabbit trephine defect. J Biomed Mater Res 66A(2):275–82CrossRefGoogle Scholar
  33. 33.
    Kelsey D, Goodman SB (1997) Design of the femoral component for cementless hip replacement: the surgeon’s perspective. Am J Orthop 26(6):407–412Google Scholar
  34. 34.
    Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20): 4095–4103CrossRefGoogle Scholar
  35. 35.
    Sun W, Starly B, Darling A., Gomez C. (2004) Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 39: 49–58CrossRefGoogle Scholar
  36. 36.
    Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39(Pt 1):29–47Google Scholar
  37. 37.
    Sun W, Starly B, Darling A, Gomez C (2004) Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 39(Pt 1):49–58Google Scholar
  38. 38.
    Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16(1):23–28CrossRefGoogle Scholar
  39. 39.
    Hutmacher DW, Goh JCH, Teoh SH (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 30(2):183–191Google Scholar
  40. 40.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362CrossRefGoogle Scholar
  41. 41.
    Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech 27(9): 1127–1136CrossRefGoogle Scholar
  42. 42.
    Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comp Meth Appl Mecha Eng 71(2):197–224CrossRefMathSciNetGoogle Scholar
  43. 43.
    Bendsoe MP, Sigmund O (2003) Topology optimization. Theory, methods and Applications. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  44. 44.
    Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Kim H, Querin OA, Steven GP, Xie YM (2002) Determination of an optimal topology with a predefined number of cavities. AIAA J 40(4):739–744CrossRefGoogle Scholar
  46. 46.
    Kim H, Querin OM, Steven GP, Xie YM (2000) A method for varying the number of cavities in an optimized topology using evolutionary structural optimization. Structural and Multidisciplinary Optimization 19(2):140–147CrossRefGoogle Scholar
  47. 47.
    Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, LondonGoogle Scholar
  48. 48.
    Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196MATHCrossRefGoogle Scholar
  49. 49.
    Rho JY, Hobatho MC, Ashman RB (1995) Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 17(5):347–355CrossRefGoogle Scholar
  50. 50.
    Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2):155–168CrossRefGoogle Scholar
  51. 51. Scholar
  52. 52.
    Sun W, Hu X (2002) Reasoning boolean operation based CAD modeling for heterogeneous objects. Computer Aided Design 34:481–488CrossRefGoogle Scholar
  53. 53.
    Cromwell PR (1997) Polyhedra. Cambridge University Press, Cambridge 451MATHGoogle Scholar
  54. 54.
    Cowin SC (1983) The mechanical and stress adaptive properties of bone. Ann Biomed Eng 11(3–4):263–295CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. A. Wettergreen
  • B. S. Bucklen
  • M. A. K. Liebschner
  • W. Sun

There are no affiliations available

Personalised recommendations