Advertisement

Keywords

Virtual Reality Thrust Force Collision Detection Volume Rendering Force Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouzgia MB, James DF (1995) Measurements of shaft speed while drilling through bone. J Oral Maxillofacial Surg 53:1308–1315CrossRefGoogle Scholar
  2. Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A (2002) Real-time haptic and visual simulation of bone dissection. IEEE Virtual Reality Conference, pp 209–216Google Scholar
  3. Allotta B, Belmonte F, Bosio L, Dario P (1996) Study on a mechatronic tool for drilling in the osteosynthesis of long bones: tool/bone interaction, modeling and experiments. Machatronics 6(4): 447–459CrossRefGoogle Scholar
  4. Astley O, Hayward V (2000) Design constraints for haptic surgery simulation. Proceedings of the 2000 IEEE international conference on Robotics & Automation, San Francisco, CAGoogle Scholar
  5. Avila RS, Sobierajski LM (1996) A haptic interaction method for volume visualization. IEEE Visualization proceedings, San Francisco, MA, pp 197–204Google Scholar
  6. Bærentzen A (1998) Octree-based volume sculpting. Proceedings of IEEE Visualization conference, Research triangle park, NC, pp 9–12Google Scholar
  7. Bærentzen A (2001) Volume sculpting: intuitive, interactive 3D shape modelling. IMM, May 15Google Scholar
  8. Barker VL (1999) Cathsim. In: Westwood JD, Hoffman HM, Robb RA, Stredney D (eds) Proceedings of MMVR IOS Press, San Francisco, USA, pp 36–37Google Scholar
  9. Bentzen SM, Hvid I, Jorgensen J (1987) Mechanical strength of tibial trabecular bone evaluated by X-Ray Computer Tomography. J Biomech 20(8):743–752CrossRefGoogle Scholar
  10. Berkley J, Weghorst S, Gladstone H, Raugi G, Berg D, Ganter M (1999) Fast finite element modeling for surgical simulation. In: Westwood JD, Hoffman HM, Robb RA, Stredney D (eds) Proceedings of MMVR IOS Press, San Francisco, USA, pp 55–61Google Scholar
  11. Boada I, Navazo I (2001) Multiresolution isosurface fitting on a surface octree. 6th International Fall Workshop Vision, Modeling and Visualization 2001, Stuttgart, Germany, pp 318–324Google Scholar
  12. Bro-Nielsen M, Helfrick D, Glass B, Zeng X, Connacher H (1998) VR simulation of abdominal trauma surgery. Proceedings of Medicine Meets Virtual Reality 6 (MMVR-6), IOS Press, San Diego, California, pp 117–123Google Scholar
  13. Bryan J, Stredney D, Wiet G, Sessanna D (2001) Virtual temporal bone dissection: A case study. IEEE Visualization 2001, October 21-October 26, San DiegoGoogle Scholar
  14. Cabral B, Cam N, Foran J (1994) Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. Symposium on Volume Visualization, pp 91–98Google Scholar
  15. Choi BK, Jerard RB (1998) Sculptured surface machining theory and applications. Kluwer Academic Publishers, Norwell, MAGoogle Scholar
  16. Chi X, Leu MC, Ochoa J (2004) Modeling of haptic rendering for virtual bone surgery. Proceedings of ASME International Mechanical Engineering Congress and R&D Expo and Computers and Information in Engineering Conference, Anaheim, CAGoogle Scholar
  17. Chi X, Niu Q, Thakkar V, Leu MC (2005) Development of a bone drilling simulation system with force feedback. Proceedings of ASME International Mechanical Engineering Congress and Exposition, Orlando, FLGoogle Scholar
  18. Chi X, Leu MC (2006) Interactive soft tissue deformation simulation using physics-based modeling. Proceedings of ASME International Mechanical Engineering Congress and Exposition, Chicago, ILGoogle Scholar
  19. Conditt M, Noble PC, Thompson MT, Ismaily SK, Moy G, Mathis KB (2003) Quantitative analysis of surgical technique in total knee replacement. Proceedings of the 49th Annual Meeting of the Orthopedic Research Society, pp 13–17Google Scholar
  20. Delp SL, Loan P, Basdogan C, Rosen JM (1997) Surgical simulation: an emerging technology for training in emergency medicine. Presence 6(2):147–159Google Scholar
  21. Edmond CV, Heskamp D, Sluis D, Stredney D, Wiet GJ, Yagel R, Weghorst S, Oppenheimer P, Miller J, Levin M, Rosenberg L (1997) Simulation for ENT endoscopic surgical training. Proceedings Medicine Meets Virtual Reality 5, San Diego, CA, pp 518–528Google Scholar
  22. Eriksson M, Flemmer H, Wikander J(2005) Haptic simulation of the milling process in temporal bone operations. MMVR 13 Medicine Meets Virtual Reality Conference, Jan 2005Google Scholar
  23. Foley JD, Dam AV, Feiner SK, Hughes JF (1996) Computer graphics: Principles and practice, 2nd edn. Addison Wesley, BostonGoogle Scholar
  24. Galyean TA, Hughes JF (1991) Sculpting: an interactive volumetric modeling technique. Comput graph 4(25):267–274Google Scholar
  25. Gibson S, Samosky J, Mor A, Fyock C, Grimson E, Kanade T, Kikinis R, Lauer H, McKenzie N, Nakajima S, Ohkami H, Osborne R, Sawada A (1997) Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback. Proceedings of Computer Vision and Virtual Reality in Medicine and Medical Robotics and Computer Assisted Surgery, pp 369–378Google Scholar
  26. Gorman PJ, Meier AH, Krummel TM (2000) Computer-assisted training and learning in surgery. Comput Aided Surg 5:120–130CrossRefGoogle Scholar
  27. Haluck RS, Krummel TM (2000) Computers and virtual reality for surgical education in the 21st century. Arch Surg 135:786–792CrossRefGoogle Scholar
  28. Hobkirk J, Rusiniak K (1977) Investigation of variable factors in drilling bone. J Oral Surg, 35:968–973Google Scholar
  29. Hua J, Qin H (2002) Haptic sculpting of volumetric implicit functions. Proceedings of the 2002 IEEE symposium on volume visualization and graphics, pp 55–64Google Scholar
  30. Jackson A, John NW, Thacker NA, Gobbetti E, Zanetti G, Stone RJ, Linney AD, Alusi GH, Schwerdtner A (2002) Developing a virtual reality environment for petrous bone surgery: A “state-of-the-art” review. J Otology and Neurotol 23:111–121 March 2002CrossRefGoogle Scholar
  31. Jacob CH, Berry JT, Pope MH, Hoaglund FT (1976) A study of the bone machining process-drilling. J. Biomech 9:343–349CrossRefGoogle Scholar
  32. John NW, Thacker N, Pokric M, Jackson A, Zanetti G, Gobbetti E, Giachetti A, Stone RJ, Campos J, Emmen A, Schwerdtner A, Neri E, Franseschini SS, Rubio F (2001) An integrated simulator for surgery of the petrous bone. Proceedings Medicine mettes virtual reality, pp 218–224Google Scholar
  33. Kaufman A, Cohen D, Yagel R (1993) Volume graphics. IEEE Computer 26(7):51–64Google Scholar
  34. Karalis T, Galanos P (1982) Research on the mechanical impedance of human bone by a drilling test. Journal of Biomechanics 15(8): 561–581CrossRefGoogle Scholar
  35. Kovacevic D, Loncaric S, Sorantin E (1999) Deformable contour based method for medical image segmentation. First croatian symposium on computer assisted surgery, Zagreb, CroatiaGoogle Scholar
  36. Lacroute P, Levoy M (1994) Fast volume rendering using a shear-warp factorization of the viewing transformation. Proceedings of SIGGRAPH ‘94, pp 451–458Google Scholar
  37. Levoy M (1988) Volume rendering – display of surfaces from a volume data. IEEE Computer Graphics & Applications, Los Alamitos, CA, 8(3):29–37CrossRefGoogle Scholar
  38. Levoy M (1990) Efficient ray-tracing of volume data. ACM Transactions on Graphics, New York, 9(3):245–261MATHCrossRefGoogle Scholar
  39. Lin M, Gottschalk (1998) Collision detection between geometric models: A survey. In the Proceedings of IMA Conference on Mathematics of Surfaces, 1998Google Scholar
  40. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. Comput graph 21(4):163–169CrossRefGoogle Scholar
  41. Luis L, Schroeder W, Lydia N, Josh C (2003) ITK software guide: The insight segmentation and registration toolkit. Kitware Inc., Clifton Park, NY, USAGoogle Scholar
  42. Maintz J, Viergever M (1998) A survey of medical image registration. Medical Image Analysis 2(1):1–36CrossRefGoogle Scholar
  43. Massie TM, Salisbury JK (1994) The phantom haptic interface: A device for probing virtual objects. ASME Haptic Interfaces for Virtual Environment and Teleoperator Systems 1:295–301Google Scholar
  44. MeiSSner M, Huang J, Bartz D, Mueller K, Crawfis R (2000) A practical evaluation of four popular volume rendering algorithms. In ACM Symposium on volume visualizationGoogle Scholar
  45. Mark WR, Randolph SC, Finch M, Verth JMV, Taylor II RM (1996) Adding force feedback to graphics systems: Issues and solution. Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 447–452Google Scholar
  46. McNeely WA, Puterbaugh KD, Troy JJ (1999) Six degree-of-freedom haptic rendering using voxel sampling. Proceedings of ACM SIGGRAPH, pp 401–408Google Scholar
  47. Morris D, Sewell C, Blevins N, Barbagli F (2004) A collaborative virtual environment for the simulation of temporal bone surgery. Proceedings of Medical Image Computing and Computer-Assisted Intervention Conference, Saint-Malo, FRANCE, pp 319–327Google Scholar
  48. Nakao M, Kuroda T, Oyama H (2003) A haptic navigation system for supporting master-slave robotic surgery. Proceedings of ICAT 2003, Tokyo, JapanGoogle Scholar
  49. Niu Q, Chi X, Leu MC (2005) Large medical data manipulation for bone surgery simulation. Proceedings of ASME International Mechanical Engineering Congress and Exposition, Orlando, FLGoogle Scholar
  50. Niu Q, Leu MC (2007) Modeling and rendering for a virtual bone surgery system. Proceedings of Medical Meets Virtual Reality Conference, Long Beach, CAGoogle Scholar
  51. Okamura AM (1998) Literature survey of haptic rendering, collision detection, and object modelingGoogle Scholar
  52. Peng X, Chi X, Ochoa J, Leu MC (2003) Bone surgery simulation with virtual reality. Proceedings of ASME Design Engineering Computers and Information in Engineering Conferences,Chicago, ILGoogle Scholar
  53. Peng X, Zhang W, Asam S, Leu MC (2004) Surface Reconstruction from Dexel Data for Virtual Sculpting. Proceedings of ASME International Mechanical Engineering Conference, Anaheim, CAGoogle Scholar
  54. Petersik A, Pflesser B, Tiede U, Hoehne KH, Leuwer R (2002) Haptic volume interaction with anatomic models at sub-voxel resolution. Haptics, Orlando, Florida, pp 66–72Google Scholar
  55. Pflesser B, Petersik A, Tiede U, Hohne HK, Leuwer R (2002) Volume cutting for virtual petrous bone surgery. Comput Aided Surg 7:74–83CrossRefGoogle Scholar
  56. Plaskos C, Hodgeson A, Cinquin P (2003) Modeling and optimization of bone-cutting forces in orthopedic surgery. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2878:254–261Google Scholar
  57. Ritter L, Burgielski Z, Hanssen N, Jansen T, Lievin M, Sader R, Zeilhofer HF, KeeveE (2004) 3D interactive segmentation of bone for computer-aided surgical planning. Proceedings 4th Annual Conference of the International Society for Computer Assisted Orthopedic Surgery, CAOS’04, Chicage, ILGoogle Scholar
  58. Røtnes JS, Kaasa J, Westgaard G, Grimnes M, Ekeberg T (2002) A tutorial platform suitable for surgical simulator training (SimMentor™. Medicine Meets Virtual Reality 2002Google Scholar
  59. Ruspini DC, Kolarov K, Khatib O (1997) The haptic display of complex graphical environments Proceedings of ACM SIGGRAPH, pp 345–352Google Scholar
  60. Ruspini D, Khatib O (1998) Dynamic models for haptic rendering systems. Advances in Robot Kinematics: ARK98, Strobl/Salzburg, Austria, pp 523–532Google Scholar
  61. Schroeder W, Martin K, Lorensen B (2002) The visualization toolkit—an object-oriented approach to 3D graphics, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  62. Shekhar R, Fayyad E, Yagel R, Cornhill J (1996) Octree based decimation of marching cubes surfaces. Visualization 96:335–342Google Scholar
  63. Sutton P, Hansen DC (1999) Isosurface extraction in time-varying fields using a temporal branch-on-need tree (T-BON). IEEE Visualization ‘99, pp 147–153Google Scholar
  64. Udilijak T, Ciglar D, Mihoci K (2003) Influencing parameters in bone drilling. In Proceedings of 9th International Scientific Conference on Production Engineering CIM, pp 133–142Google Scholar
  65. Velasco F, Torres JC (2001) Cells octree: a new data structure for volume modeling and visualization. Proceedings of the VI Fall Workshop on Vision, Modeling and Visualization, Stuttgart, Germany, pp 151–158Google Scholar
  66. VRMedLab, 2003, http://www.bvis.uic.edu/vrml/Google Scholar
  67. Wang SW, Kaufman AE (1995) Volume sculpting. Proceedings of Symposium on Interactive 3D Graphics, Monterey, CA, pp 151–156Google Scholar
  68. Westermann R, Kobbelt L, Ertl T (1999) Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Visual Computer, 15(2):100–111CrossRefGoogle Scholar
  69. Westover L (1990) Footprint evaluation for volume rendering. Proceedings of ACM SIGGRAPH, pp 367–376Google Scholar
  70. Wiet GJ, Bryan J, Dodson E, Sessanna D, Stredney D, Schmalbrock P, Welling B (2000) Virtual temporal bone dissection. In: Westwood et al (eds) Proceedings of MMVR8. IOS Press Amsterdam, pp 378–384Google Scholar
  71. Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9:553–559CrossRefGoogle Scholar
  72. Wilhelms J, van Gelder A (1990) Octrees for faster isosurface generation. Proceedings of the 1990 workshop on volume visualization, pp 57–62Google Scholar
  73. Yang Z, Chen Y (2003) Haptic rendering of milling. In Proceedings of Eurohaptics ConferenceGoogle Scholar
  74. Zhu, Q, Chen Y, Kaufman AE (1998) “Real-time biomechanically-based muscle volumedeformation using FEM,” Proceedings of EUROGRAPHICS ‘98Google Scholar
  75. Zilles C, Salisbury JK (1995) A constraint-based god object method for haptics display. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ming C. Leu
  • Qiang Niu
  • Xiaoyi Chi

There are no affiliations available

Personalised recommendations