Design, Fabrication and Physical Characterization of Scaffolds Made from Biodegradable Synthetic Polymers in combination with RP Systems based on Melt Extrusion

  • D. W. Hutmacher
  • M. E. Hoque
  • Y. S. Wong


Tissue Engineering Rapid Prototype Triblock Copolymer Composite Scaffold Fuse Deposition Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali E, Hamid M (1998) Densities of poly(ethylene glycol) + water mixtures in the 298.15–328.15 K temperature range. J Chem Eng Data 43:719–721CrossRefGoogle Scholar
  2. Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, M. XM, Loh HT, Burdet E and Teoh SH (2002) Fabrication of 3D chitosan- hydroxyapatite scaffolds using a robotic dispensing system. Materials Science & Engineering: C 20(1–2):35–42CrossRefGoogle Scholar
  3. Anna K (1997) Rapid prototyping trends. Rapid Prototyping J 3(4):150–152CrossRefGoogle Scholar
  4. Baldwin DF, Shimbo M, Suh NP (1995) The role of gas dissolution and induced crystallization during microcellular polymer processing: A study of poly(ethylene terephthalate) and carbon dioxide systems. J Eng Mater-T ASME 117(1):62–74Google Scholar
  5. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29(12):1517–1524CrossRefGoogle Scholar
  6. Calvert P, Crockett R (1997) Chemical solid free-form fabrication: Making shapes without molds. Chem Mater 9:650–663CrossRefGoogle Scholar
  7. Comb JW, Priedeman WR, Turley PW (1994a) Layered manufacturing control parameters and material selection criteria. Manufacturing Science and Engineering Vol. 2, PED-vol. 68–2, ASMEGoogle Scholar
  8. Comb JW et al (1994b) FDM technology process improvements. In: Marcus HL et al (eds) Proc of the Solid Freeform Fabrication Symposium 5:42–49Google Scholar
  9. D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, Tomlinson FH (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53(3):200–4CrossRefGoogle Scholar
  10. Deng X, Zhu Z, Xiong C Zhang L (1997) J Polym Sci Part A: Polym Chem 35:35CrossRefGoogle Scholar
  11. Dobrzynski P, Kasperczyk J, Bero M (1999) Macromolecules 32:4735–4737CrossRefGoogle Scholar
  12. Endres M et al (2003) Osteogenic induction of human bone marrow derived mesenchymal progenitor cells in novel synthetic polymerhydrogel matrices. Tissue Eng 9:689–702CrossRefGoogle Scholar
  13. Feng XD, Song CX, Chen WS (1983), J. Polym. Sci. Polym. Lett. Edn. 21, 593CrossRefGoogle Scholar
  14. Gibson LJ, Ashby MF (eds) (1997) Cellular solids: Structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  15. Harris LD, Kim BS, Mooney DJ (1998) Open biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research 42:396–402CrossRefGoogle Scholar
  16. Healy KE, Whang K, Thomas CH (1998) Method of fabricating emulsion freeze-dried scaffold bodies and resulting products. US Patent 5,723,508Google Scholar
  17. Ho ST, Hutmacher DW (2005) Application of micro CT and computation modeling in bone tissue engineering. Computer-Aided Design 37(11):1151–1161CrossRefGoogle Scholar
  18. Hollister SJ (2006) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524CrossRefGoogle Scholar
  19. Hollister SJ et al (2000) An image based approach to design and manufacture craniofacial scaffolds. Int J Oral Maxillofac Surg 29:67–71CrossRefGoogle Scholar
  20. Holy CE, Shoichet MS, Davies JE (2000) Engineering 3-D bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period. J Biomed Mater Res 51(3):376–382CrossRefGoogle Scholar
  21. Hoque ME, Hutmacher DW, Feng W, Li S, Huang M-H, Vert M, Wong YS (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed. 16(12):1595–1610CrossRefGoogle Scholar
  22. Huang M-H, Li S, Hutmacher DW, Schantz J-T, Vacanti CA, Braud C, Vert M (2004) Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ε-caprolactone in the presence of poly(ethylene glycol). J Biomed Mater Res 69A: 417–427CrossRefGoogle Scholar
  23. Hutmacher DW (2000a) Polymeric scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefGoogle Scholar
  24. Hutmacher DW, Teoh SH, Zein I, Ng KW, Schantz JT, Leahy JC (2000b) Design and Fabrication of a 3D Scaffold for Tissue Engineering Bone. In: Synthetic bioabsorbable polymers for implants; Agrawal CM, Parr JE, Lin ST (eds), STP 1396-EB, p.152Google Scholar
  25. Hutmacher DW (2001a) Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. J Biomater Sci Polym Edn 12(1):107–124CrossRefGoogle Scholar
  26. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001b) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:55CrossRefGoogle Scholar
  27. Hutmacher DW, Cool S (2007) Concepts of scaffold-based tissue engineering the rational to use solid free-form fabrication techniques. J Cell Mol Med. 11(4):654–669CrossRefGoogle Scholar
  28. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. TRENDS in Biotechnology 22(7):354–362CrossRefGoogle Scholar
  29. Hutmacher DW, Woodfield T, Dalton PD, Lewis JA (in press) Scaffold design and fabrication. In: Clemens van Blitterswijk (chief editor), Cancedda R, Hubbell J, Lindahl A, Thomsen P, Williams D (eds) Textbook on Tissue Engineering. ElsevierGoogle Scholar
  30. Koch KU, Biesinger B, Arnholz C, Jansson V, (1998) Creating of bio-compatible, high stress resistant and resorbable implants using multiphase jet solidification technology. In: Time-Compression Technologies, Interactive Computing Europe, CATIA-CADAM Solutions, formation, International Business Machines Corporation – IBM: Time-Compression Technologies ‘98 Conference London, GB: Rapid News Publications, pp 209–214Google Scholar
  31. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002b) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–47CrossRefGoogle Scholar
  32. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R (2002a) Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 37(15):3107–3116CrossRefGoogle Scholar
  33. Landers R, Mülhaupt R (2000) Desktop manufacturing of complex objects, prototypes & biomedical scaffolds by means of computer-assisted design combined with computer-guided 3-D plotting of polymers & reactive oligomers. Macromolecular Materials & Engrg 282: 17–21CrossRefGoogle Scholar
  34. Lee JW, Hua F, Lee DS, (2001) Thermoreversible gelation of biodegradable poly(ε-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. J. Controlled Release 73: 315–327Google Scholar
  35. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of 3-D scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378CrossRefGoogle Scholar
  36. Leong KF, Phua KK, Chua CK, Du ZH, Teo KO (2001) Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H 215:191–201CrossRefGoogle Scholar
  37. Li S, Garreau H, Pauvert B, McGrath J, Toniolo A, Vert M (2002) Enzymatic degradation of block copolymers prepared from ε-caprolactone and poly(ethylene glycol). Biomacromolecules 3:525–530CrossRefGoogle Scholar
  38. Li SM, Rashkov I, Espartero JL, Manolova N, Vert M (1996) Synthesis, Characterization, and Hydrolytic Degradation of PLA/PEO/PLA Triblock Copolymers with Long Poly(L-lactic acid) Blocks, J. Macromolecules 29(1): 57–62CrossRefGoogle Scholar
  39. Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1:15–28CrossRefGoogle Scholar
  40. Longhai P, Zhongli D, Mingxiao D, Xuesi C, Xiabin J (2003) Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer 44:2025–2031CrossRefGoogle Scholar
  41. Lu CH, Lin WJ (2002). Permeation of protein from porous poly(ε-caprolactone) films. J Biomed Mater Res 63:220–225CrossRefGoogle Scholar
  42. Lu L, Mikos AG(1996) The importance of new processing techniques in tissue engineering. MRS Bulletin 21(11):28–32Google Scholar
  43. Ma PX, Zhang RY (1999b) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46(1):60–72CrossRefMathSciNetGoogle Scholar
  44. Mano JF, Vaz CM, Mendes SC et al (1999) Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. J Mater Sci 10:10Google Scholar
  45. Maquet V, Jerome R (1997) Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mater. Sci. Forum 250:15–42Google Scholar
  46. Middleton JC, Tipton AJ (1998) Synthetic biodegradable polymers as medical devices. Med Plastics Biomater Mag 3:3Google Scholar
  47. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993b) Laminated 3-D biodegradable foams for use in tissue engineering. Biomaterials 14:323–330CrossRefGoogle Scholar
  48. Mikos AG, Sarakinos G, Vacanti JP, Langer RS, Cima LG (1996) Biocompatible polymer membranes and methods of preparation of 3-D membrane structures. US Patent 5,514,378Google Scholar
  49. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422CrossRefGoogle Scholar
  50. Moroni L, de Wijn JR, van Blitterswijk CA (2006). 3-D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7):974–785CrossRefGoogle Scholar
  51. Perrin DE, English JP (1997) Polyglycolide and polylactide. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Harwood Academic Publishers, New York, pp 3–27Google Scholar
  52. Perrin DE, English JP (1998) Polyglycolide and polylactide. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Harwood Academic Publishers, New York, pp 3–27Google Scholar
  53. Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG (1998) In vivo degradation of a poly (propylene fumarate) β-tricalcium phosphate injectable composite scaffold, J Biomed Mater Res 41(1):1–7CrossRefGoogle Scholar
  54. Peters MC, Mooney DJ (1997) Synthetic extracellular matrices for cell transplantation. Mater Sci Forum 250:43–52CrossRefGoogle Scholar
  55. Pfister A et al (2004) Biofunctional rapid prototyping for tissue engineering applications: 3-D bioplotting versus 3-D printing. J Polym Sci 42:624–638Google Scholar
  56. Pitt CG (1990) poly(ε-caprolactone) and its copolymers. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York p 71–120Google Scholar
  57. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1998) Biomaterials 19:19CrossRefGoogle Scholar
  58. Rai B, Teoh SH, Ho KH, Hutmacher DW, Cao T, Chen F, Yacob K (2004) The effect of rhBMP-2 on canine osteoblasts seeded onto 3-D bioactive polycaprolactone scaffolds. Biomaterials 25(24):5499–506CrossRefGoogle Scholar
  59. Rashkov I, Manolova N, Li S, Espartero JL, Vert M (1996) Macromolecules 29:29CrossRefGoogle Scholar
  60. Recheis W, Weber GW, Schafer K, Knapp R, Seidler H (1999) Virtual reality and anthropology. Eur J Radiol 31(2):88–96CrossRefGoogle Scholar
  61. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells and Materials 5:29–40Google Scholar
  62. Saltzman WM (1999) Delivering tissue regeneration Nature Biotechnol 17:534–535Google Scholar
  63. Sanghera B, Naique S, Papaharilaou Y, Amis A (2001) Preliminary study of rapid prototype medical models. Rapid Prototyping J 7(5):275–284CrossRefGoogle Scholar
  64. Shalaby SW, Johnson RA (1994) Synthetic absorbable polyesters. In: Shalaby SW (eds) Biomedical polymers: Designed-to-degrade systems. Hanser Publishers, New York, pp 1–34Google Scholar
  65. Shastri VP, Martin I, Langer R (2000) Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA, 97(5):1970–1975CrossRefGoogle Scholar
  66. Sherwood JK et al (2002) A 3-D osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751CrossRefGoogle Scholar
  67. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995a) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Edn 7(1):23–38Google Scholar
  68. Thomson RC, Shung AK, Yaszemski MJ, Mikos AG (2000) Polymer scaffold processing. In: Lanza RP, Langer R, Vacanti JP (eds) Principles of tissue engineering, 2nd edn. Academic Press, San Diego Chapter 21, 251–262Google Scholar
  69. Vanezi P, Vanezis M, McCombe G, Niblett T (2000) Facial reconstruction using 3-D computer graphics. Forensic Sci Int, 108(2):81–95CrossRefGoogle Scholar
  70. Vats A, Tolley NS, Polak JM, Gough JE (2003) Clin Otolaryngol 28:28CrossRefGoogle Scholar
  71. Vert M, Li S, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci: Mater in Med 3:432–446CrossRefGoogle Scholar
  72. Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S, Lau A (2004) Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds. Rapid Prototyping J 10(1):420–429CrossRefGoogle Scholar
  73. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127CrossRefGoogle Scholar
  74. Whang K, Thomas CK, Nuber G, Healy KE (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36(4):837–842CrossRefGoogle Scholar
  75. Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, Healy KE (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42:491–499CrossRefGoogle Scholar
  76. Widmer MS, Mikos AG (1998) Fabrication of biodegradable polymer scaffolds for tissue engineering. In: Patrick Jr CW, Mikos AG, McIntire LV (eds) Frontiers in tissue engineering. Elsevier Sciences, New York pp 107–120Google Scholar
  77. Woodfield TBF, Malda J, De Wijn J, Péters F, Riesle J, Van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a 3-D fiber-deposition technique. Biomaterials 25:4149–4161CrossRefGoogle Scholar
  78. Xiong Z et al (2001) The fabrication of porous poly [L-lactic acid] scaffolds for bone tissue engineering via precise extrusion. Scr Mater 45:773–779CrossRefGoogle Scholar
  79. Yang SF, Leong KF, Du ZH, Chua CK (2001) The design of scaffolds for use in tissue engineering: Part 1-traditional factors. Tissue Eng 7(6):679–89CrossRefGoogle Scholar
  80. Yuan ML, Wang YH, Li XH, Xiong CD, Deng XM (2000) Polymerization of Lactides and Lactones. 10. Synthesis, Characterization, and Application of Amino-Terminated Poly(ethylene glycol)-co-poly(ε-caprolactone) Block Copolymer, Macromolecules 33(5):1613–1617Google Scholar
  81. Zein IW, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architecture for tissue engineering application. Biomaterials 23:1169–1185CrossRefGoogle Scholar
  82. Zhou YF, Chou AM, Li ZM, Hutmacher DW, Sae-Lim V, Lim TM (2007) Combined marrow stromal cell sheet techniques and high strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 28(5):814–824 Feb 2007CrossRefGoogle Scholar
  83. Zollikofer CPE, De Leon MSP (1995) Tools for rapid prototyping in biosciences. IEEE Comput Graph, 15(6):48–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. W. Hutmacher
  • M. E. Hoque
  • Y. S. Wong

There are no affiliations available

Personalised recommendations