Selective Laser Sintering of Polymers and Polymer-Ceramic Composites

  • Suman Das


Ultra High Molecular Weight Polyethylene Bone Tissue Engineering Selective Laser Sinter Test Part Tissue Engineering Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues-state of the art future perspectives,” J. Biomater Sci Polymer Edn 12, 107–124 (2001).CrossRefGoogle Scholar
  2. 2.
    D. W. Hutmacher, M. Sittinger, and M. V. Risbud, “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems,” Trends Biotechnol 22, 354–62 (2004).CrossRefGoogle Scholar
  3. 3.
    E. Sachlos and J. T. Czernuska, “Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds,” European Cells and Materials 5, 29–40 (2003).Google Scholar
  4. 4.
    B. Partee, S. J. Hollister, S. Das. Selective Laser Sintering of Polycaprolactone Bone Tissue Engineering Scaffolds. Materials Research Society Symposium Proceedings, p 845 (2005).Google Scholar
  5. 5.
    T.-M. G. Chu, J. W. Halloran, S. J. Hollister, and S. E. Feinberg, “Hydroxyapatite implants with designed internal architecture,” Journal of Materials Science: Materials in Medicine 12, 471–478 (2001).CrossRefGoogle Scholar
  6. 6.
    J. J Beaman, J. W. Bourell D. L. Barlow, R. H. Crawford, H. L. Marcus, and K. P. McAlea, Solid Freeform Fabrication: A New Direction in Manufacturing (Kluwer Academic Publishers, Boston 1997).Google Scholar
  7. 7.
    M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, “Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth,” J Biomed Mater Res 64B, 65–9 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Das and S. J. Hollister, “Tissue engineering scaffolds” in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan, eds. (Elsevier, 2001).Google Scholar
  9. 9.
    R. A. Giordano, B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima, “Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing,” J Biomater Sci Polym Ed 8, 63–75 (1996).Google Scholar
  10. 10.
    S. J. Hollister, R. D. Maddox, and J. M. Taboas, “Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints,” Biomaterials 23, 4095–4103 (2002).CrossRefGoogle Scholar
  11. 11.
    D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials 21, 2529–2543 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Limpanuphap and B. Derby, “Manufacture of biomaterials by a novel printing process,” Journal of Materials Science: Materials in Medicine 13, 1163–1166 (2002).CrossRefGoogle Scholar
  13. 13.
    Jill K. Sherwood, Susan L. Riley, Robert Palazzolo, Scott C. Brown, Donald C. Monkhouse, Matt Coates, Linda G. Griffith, Lee K. Landeen, and Anthony Ratcliffe, “A three-dimensional osteochondral composite scaffold for articular cartilage repair,” Biomaterials 23, 4739–4751 (2002).Google Scholar
  14. 14.
    R. Sodian, M. Loebe, A. Hein, T. Lueth, D. P. Martin, E. V. Potapov, F. Knollmann, and R. Hetzer, “Application of stereolithography for scaffold fabrication for tissue engineering of heart valves,” ASAIO Journal: 46th Annual Conference and Exposition of ASAIO, Jun 28–Jul 1 2000 46, 238 (2000).Google Scholar
  15. 15.
    Ralf Sodian, Matthias Loebe, Andreas Hein, David P. Martin, Simon P. Hoerstrup, Evgenij V. Potapov, Harald Hausmann, Tim Lueth, and Roland Hetzer, “Application of stereolithography for scaffold fabrication for tissue engineered heart valves,” ASAIO Journal 48, 12–16 (2002).Google Scholar
  16. 16.
    Steidle, Cheri, Klosterman, Don, Graves, George, Osborne, Nora, and Chartoff, Richard. Automated fabrication of nonresorbable bone implants using laminated object manufacturing (LOM). Solid Freeform Fabrication Symposium Proceedings. 1998. Austin, University of Texas.Google Scholar
  17. 17.
    J. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollister, “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials 24, 181–194 (2003).CrossRefGoogle Scholar
  18. 18.
    Wang, F., Shor, L., Darling, A., Sun, W., Guceri, S., and Lau, A. Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds. Solid Freeform Fabrication Symposium. 2003. Austin, Texas, University of Texas.Google Scholar
  19. 19.
    C. E. Wilson, W. J. A. Dhert, C. A. Van Blitterswijk, A. J. Verbout, and J. D. De Bruijn, “Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue [trademark] assay and the effect on in vivo bone formation,” Journal of Materials Science: Materials in Medicine 13, 1265–1269 (2002).Google Scholar
  20. 20.
    B. M. Wu, S. W. Borland, R. A. Giordano, L. G. Cima, E. M. Sachs, and M. J. Cima, “Solid free-form fabrication of drug delivery devices,” J Controlled Release 40, 77–87 (1996).CrossRefGoogle Scholar
  21. 21.
    Zhuo Xiong, Yongnian Yan, Shenguo Wang, Renji Zhang, and Chao Zhang, “Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition,” Scripta Materialia 46, 771–776 (2002).CrossRefGoogle Scholar
  22. 22.
    Zhuo Xiong, Yongnian Yan, Renji Zhang, and Lei Sun, “Fabrication of porous poly(-lactic acid) scaffolds for bone tissue engineering via precise extrusion,” Scripta Materialia 45, 773–779 (2001).CrossRefGoogle Scholar
  23. 23.
    Yongnian Yan, Rendong Wu, Renji Zhang, Zhuo Xiong, and Feng Lin, “Biomaterial forming research using RP technology,” Rapid Prototyping Journal 9, 142–149 (2003).CrossRefGoogle Scholar
  24. 24.
    C. R. Deckard, Selective Laser Sintering. University of Texas, Austin (1988).Google Scholar
  25. 25.
    M. M. Sun, Physical Modeling of the Selective Laser Sintering Process. University of Texas, Austin, Texas (1991).Google Scholar
  26. 26.
    J. Frenkel, “Viscous flow of crystalline bodies under the action of surface tension,” Journal of Physics IX, 385–391 (1945).Google Scholar
  27. 27.
    C. T. Bellehumeur J. Vlachopoulos O. Pokluda, “Modification of Frenkel’s Model for Sintering,” AIChe Journal 43, 3253–3256 (1997).CrossRefGoogle Scholar
  28. 28.
    L. H. Sperling, in Introduction to Physical Polymer Science, L. H. Sperling, ed. (John Wiley and Sons, 2005).Google Scholar
  29. 29.
    H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1986).Google Scholar
  30. 30.
    Schiaffino, Stefano and Sonin, Ain A. “Motion and arrest of a molten contact line on a cold surface: An experimental study. Physics of Fluids,” 9(8), 2217–2226. 1997/08/00/. AIP.Google Scholar
  31. 31.
    Schiaffino, Stefano and Sonin, Ain A. “On the theory for the arrest of an advancing molten contact line on a cold solid of the same material,” Physics of Fluids 9(8), 2227–2233. 1997/08/00/. AIP.Google Scholar
  32. 32.
    G. Lee, Selective Laser Sintering of calcium phosphate materials for orthopedic implants. University of Texas, Austin, Texas (1997).Google Scholar
  33. 33.
    N. K. Vail, L. D. Swain, W. C. Fox, T. B. Aufdlemorte, G. Lee, and J. W. Barlow, “Materials for biomedical applications,” Materials & Design 20, 123–132 (1999).CrossRefGoogle Scholar
  34. 34.
    E. Berry, J. M. Brown, M. Connell, C. M. Craven, N. D. Efford, A. Radjenovic, and M. A. Smith, “Preliminary experience with medical applications of rapid prototyping by selective laser sintering,” Med Eng Phys 19, 90–96 (1997).CrossRefGoogle Scholar
  35. 35.
    S. Das, S. J. Hollister, C. Flanagan, A. Adewunmi, K. Bark, C. Chen, K. Ramaswamy, D. Rose, and E. Widjaja, “Freeform Fabrication of Nylon-6 Tissue Engineering Scaffolds,” Rapid Prototyping Journal 9, 43–49 (2003).CrossRefGoogle Scholar
  36. 36.
    Das, Suman, Hollister, Scott J., Flanagan, Colleen, Adewunmi, Adebisi, Bark, Karlin, Chen, Cindy, Ramaswamy, Krishnan, Rose, Daniel, and Widjaja, Erwin. “Computational design, freeform fabrication and testing of Nylon-6 tissue engineering scaffolds”. Rapid Prototyping Technologies, Materials Research Society Symposium Proceedings, 758, 205–210, (2003).Google Scholar
  37. 37.
    J. T. Rimell and P. M. Marquis, “Selective laser sintering of ultra high molecular weight polyethylene for clinical applications,” J. Biomater Res Part B 52, 414–420 (2000).CrossRefGoogle Scholar
  38. 38.
    I. V. Shishkovsky, E. Yu. Tarasova, L. V. L. V. Zhuravel, and A. L. Petrov, “The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions,” Technical Phys Lett 27, 211–213 (2001).CrossRefGoogle Scholar
  39. 39.
    K. H. Low, K. F. Leong, C. K. Chua, Z. H. Du, and C. M. Cheah, “Characterization of SLS parts for drug delivery devices,” Rapid Prototyping Journal 7, 262–268 (2001).CrossRefGoogle Scholar
  40. 40.
    C. K. Chua, K. F. Leong, K. H. Tan, F. E. Wiria, and C. M. Cheah, “Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects,” Journal of Materials Science: Materials in Medicine 15, 1113–1121 (2004).CrossRefGoogle Scholar
  41. 41.
    K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha, “Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends,” Biomaterials 24, 3115–3123 (2003).Google Scholar
  42. 42.
    K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, W. S. Gui, W. S. Tan, and F. E. Wiria, “Selective laser sintering of biocompatible polymers for applications in tissue engineering,” Biomed Mater Eng 15, 113–24 (2005).Google Scholar
  43. 43.
    J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das, “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering,” Biomaterials 26, 4817–27 (2005).CrossRefGoogle Scholar
  44. 44.
    Solvay Caprolactones. Properties & Processing of CAPA$^ˆledR$ Thermoplastics. [1]. 2001.Google Scholar
  45. 45.
    D. W. Hutmacher, “Polymers for Medical Applications,” Encyclopedia of Materials: Science and Technology 7664–7673 (2001).Google Scholar
  46. 46.
    B. Saad and U.W. Suter, “Biodegradable polymeric materials,” Encyclopedia of Materials: Science and Technology 551–555 (2001).Google Scholar
  47. 47.
    P. D. Darney, S. E. Monroe, C. M. Klaisle, and A. Alvarado, “Clinical evaluation of the Capronor contraceptive implant: preliminary report,” Am J Obstet Gynecol 160, 1292–1295 (1989).Google Scholar
  48. 48.
    S. J. Hollister, C. Y. Lin, C. Y. Lin, R. D. Schek, J. M. Taboas, C. L. Flanagan, E. Saito, J. M. Williams, S. Das, T. Wirtz, and P. H. Krebsbach, “Design and fabrication of scaffolds for anatomic bone reconstruction,” Med J Malaysia 59(Suppl B), 131–132 (2004).Google Scholar
  49. 49.
    S. J. Hollister, C. Y. Lin, E. Saito, C. Y. Lin, R. M. Schek, J. M. Taboas, J. M. Williams, B. Partee, C. L. Flanagan, A. Diggs, E. N. Wilke, Van Lenthe G.H. , R. Muller, T. Wirtz, S. Das, S. E. Feinberg, and P. H. Krebsbach, “Engineering craniofacial scaffolds,” Orthodontics and Craniofacial Research 8, 162–73 (2005).CrossRefGoogle Scholar
  50. 50.
    R. C. Thomson, M. C. Wake, M. J. Yaszemski, and A. G. Mikos, “Biodegradable polymer scaffolds to regenerate organs” in Biopolymers II, Nicholas A. Peppas and R.S. Langer (eds.), Springer-Verlag GmbH & Company KG, Berlin, Germany, (1995).Google Scholar
  51. 51.
    DeVor, R. E., Chang, T., and Sutherland, J. W. Statistical Quality Design and Control: Contemporary Concepts and Methods (New Jersey, Prentice-Hall, pp. 543–605, 1992).Google Scholar
  52. 52.
    S. J. Hollister, R. A. Levy, T. M. Chu, J. W. Halloran, and S. E. Feinberg, “An image-based approach for designing and manufacturing craniofacial scaffolds,” Int J Oral Maxillofac Surg 29, 67–71 (2000).CrossRefGoogle Scholar
  53. 53.
    R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp, “The relationship between the structural and orthogonal compressive properties of trabecular bone,” J Biomechanics 27, 375–389 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Suman Das

There are no affiliations available

Personalised recommendations