Laser Printing Cells

  • Bradley R. Ringeisen
  • Jason A. Barron
  • Daniel Young
  • Christina M. Othon
  • Doug Ladoucuer
  • Peter K. Wu
  • Barry J. Spargo


Laser Printing Matrix Assisted Pulse Laser Evaporation Heat Shock Protein Expression Material Research Society Symposium Proceeding Forward Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boland T, Mironov V, Gutowska A, Roth Elisabeth A, Markwald Roger R (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272:497CrossRefGoogle Scholar
  2. 2.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157CrossRefGoogle Scholar
  3. 3.
    Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81CrossRefGoogle Scholar
  4. 4.
    Saltzman WM (2004) Tissue engineering: engineering principles for the design of replacement organs and tissues. Oxford University Press (USA, New York 1st ed.), New York, NY.Google Scholar
  5. 5.
    Williams D, Sebastine I (2005) Tissue engineering and regenerative medicine: manufacturing challenges. IEE Proc Nanobiotechnol 152:207CrossRefGoogle Scholar
  6. 6.
    Murugan R, Ramakrishna S (2006) Review article: nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 12:435CrossRefGoogle Scholar
  7. 7.
    Norman J, Desai T (2006) Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Annals of Biomedical Eng. 34:89CrossRefGoogle Scholar
  8. 8.
    Yang SF, Leong KF, Du ZH, Chua CK (2002) The design of scaffolds for use in tissue engineering. Traditional factors. Part 1. Tissue Eng. 7:679Google Scholar
  9. 9.
    Chen VJ, Ma PX (2004) Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem. Rev. 101:1869Google Scholar
  11. 11.
    Lee KY, Peters MC, Mooney DJ (2001) Controlled drug delivery from polymers by mechanical signals. Advanced Mater 13:837CrossRefGoogle Scholar
  12. 12.
    Ma PX (2004) Scaffolds for tissue fabrication. Materials Today 7:30Google Scholar
  13. 13.
    Ma PX, Choi J-W (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7:23CrossRefGoogle Scholar
  14. 14.
    Ma PX, Zhang R (1999) Synthetic nanoscale fibrous extracellular matrix. J Biomed Mater Res 46:60CrossRefGoogle Scholar
  15. 15.
    Shea L, Smiley E, Bonadio J, Mooney DJ (1999) DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17:551CrossRefGoogle Scholar
  16. 16.
    Vasita R, Katti D (2006) Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 3:29CrossRefGoogle Scholar
  17. 17.
    Jakab K, Neagu A, Mironov V, Forgacs G (2004) Organ printing: fiction or science. Biorheology 41:371Google Scholar
  18. 18.
    Barron JA, Krizman David B, Ringeisen Bradley R (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121CrossRefGoogle Scholar
  19. 19.
    Saunders R, Bosworth L, Gough J, Derby B, Reis N (2004) Selective cell delivery for 3D tissue culture and engineering. Eur Cell Mater 7(Suppl. 1):84Google Scholar
  20. 20.
    Othman S, Xu H, Royston T, Magin R (2005) Microscopic magnetic resonance elastography (microMRE). Magn Reson Med 54:605CrossRefGoogle Scholar
  21. 21.
    Barron J, Young H, Dlott D, Darfler M, Krizman D, Ringeisen B (2005) Printing of protein microarrays via a capillary-free fluid jetting mechanism. Proteomics 5:4138CrossRefGoogle Scholar
  22. 22.
    Chrisey D, Pique A, McGill R, Horwitz J, Ringeisen B, Bubb D, Wu P (2003) Laser deposition of polymer and biomaterial films. Chem Rev 103:553CrossRefGoogle Scholar
  23. 23.
    Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RYC, Spargo BJ (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10:483Google Scholar
  24. 24.
    Young HD, Auyeung RCY, Ringeisen BR, Chrisey DB, Dlott DD. Jetting behavior in the laser forward transfer of rheological systems. In U.S. Pat. Appl. Publ.; (The United States of America as represented by the Secretary of the Navy, USA). Us, 2003; p 16Google Scholar
  25. 25.
    Barron JA, Rosen R, Jones-Meehan J, Spargo BJ, Belkin S, Ringeisen BR (2004) Biological laser printing of genetically modified Escherichia coli for biosensor applications. Biosens Bioelectron 20:246CrossRefGoogle Scholar
  26. 26.
    Barron JA, Spargo BJ, Ringeisen BR (2004) Biological laser printing of three dimensional cellular structures. Appl Phys Mater Sci. Process 79:1027Google Scholar
  27. 27.
    Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell Patterns. Biomedical Microdevices 6:139CrossRefGoogle Scholar
  28. 28.
    Chen CY, Barron JA, Ringeisen BR (2006) Cell patterning without chemical surface modification: Cell-cell interacftions between bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Applied Surface Science 252(24):8641–8645CrossRefGoogle Scholar
  29. 29.
    Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA, Conrads TP, Veenstra TD, Krizman DB (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4:1741CrossRefGoogle Scholar
  30. 30.
    Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvari L, Chrisey D, Szabo A, Nogradi A (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817CrossRefGoogle Scholar
  31. 31.
    Ringeisen BR, Barron JA, Spargo BJ (2004) Novel seeding mechanisms to form multilayer heterogeneous cell constructs. Materials Research Society Symposium Proceedings EXS-1:105Google Scholar
  32. 32.
    Hagland R (1998) Mechanisms of Laser0Induced Desorption and Ablation. In: Miller J, Haglund R (ed) Laser-Induced Desorption. Academic Press, Chestnut Hill, MA, p 15Google Scholar
  33. 33.
    Young D, Auyeung R, Piqué A, Chrisey D, Dlott D (2002) Plume and jetting regimes in a laser based forward transfer process as observed by Time-Resolved optical microscopy. Appl Surf Sci 197:181CrossRefGoogle Scholar
  34. 34.
    Dou Y, Zhigilei L, Postawa A, Winograd N, Garrison B (2001) Nuclear Instruments and Methods in Physics Research B 180:105CrossRefGoogle Scholar
  35. 35.
    Young D, Auyeung R, Piqué A, Chrisey D, Dlott D (2001) Time resolved optical microscopy of a Laser-Based forward transfer process. Appl Phys Lett 78:3139CrossRefGoogle Scholar
  36. 36.
    Palik E (1985) Handbook of optical constants of solids. Academic Press, Chestnut Hill, MA,Google Scholar
  37. 37.
    van Dam D, Clerc C (2004) Experimental study of the impact of an impact of an Ink-Jet droplet of a solid substrate. Phys Fluids 16:3403CrossRefGoogle Scholar
  38. 38.
    Ringeisen BR, Chrisey DB, Pique A, Young HD, Modi R, Bucaro M, Jones-Meehan J, Spargo BJ (2001) Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23:161CrossRefGoogle Scholar
  39. 39.
    DeWith A, Leit G, Greulich KO (1994) UV-B-Laser-induced DNA-damage in lymphocytes observed by Single-cell Gel-electophoresis. J Photochem Photobiol B 24:47Google Scholar
  40. 40.
    Mohanty SK, Rapp A, Monajembashi S, Gupta PK, Greulich KO (2002) Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm. Radiat Res 157:378CrossRefGoogle Scholar
  41. 41.
    Fernandez-Pradas JM, Colina M, Serra P, Dominguez J, Morenza JL (2004) Laser-induced forward transfer of biomolecules. Thin Solid Films 27:453–454Google Scholar
  42. 42.
    Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. Biomed Mater Res 52:346CrossRefGoogle Scholar
  43. 43.
    Falconnet D, Csucs G, Michelle Grandin H, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:3044CrossRefGoogle Scholar
  44. 44.
    Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 2:227CrossRefGoogle Scholar
  45. 45.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363CrossRefGoogle Scholar
  46. 46.
    Lahiri J, Ostuni E, Whitesides GM (1999) Patterning ligands on reactive SAMs by microcontact printing. Langmuir 15:2055CrossRefGoogle Scholar
  47. 47.
    Spargo BJ, Testoff MA, Nielsen TB, Stenger DA, Hickman JJ, Rudolph AS (1994) Spatially controlled adhesion, spreading, and differentiation of endothelial cells on self-assembled molecular monolayers. Proc Natl Acad Sci US A 91:11070CrossRefGoogle Scholar
  48. 48.
    Tien J, Nelson C, Chen C (2002) Fabrication of aligned microstructures with a single elastomeric stamp. Proc Natl Acad Sci USA 99:1758CrossRefGoogle Scholar
  49. 49.
    Wilbur JL, Kumar A, Biebuyck HA, Kim E, Whitesides GM (1996) Microcontact printing of self-assembled monolayers: applications in microfabrication. Nanotechnology 7:452CrossRefGoogle Scholar
  50. 50.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Materials Sci 28:153CrossRefGoogle Scholar
  51. 51.
    Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580Google Scholar
  52. 52.
    Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93Google Scholar
  53. 53.
    Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385CrossRefGoogle Scholar
  54. 54.
    Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnology and Bioengineering 67:312CrossRefGoogle Scholar
  55. 55.
    Saunders R, Derby B, Gough J, Reis N (2004) Ink-jet printing of human cells. Materials Research Society Symposium Proceedings EXS-1:95Google Scholar
  56. 56.
    Saunders R, Gough J, Derby B (2005) Ink jet printing of mammalian primary cells for tissue engineering applications. Materials Research Society Symposium Proceedings 845:57Google Scholar
  57. 57.
    Eagles PAM, Qureshi AN, Jayasinghe SN (2006) Electrohydrodynamic jetting of mouse neuronal cells. Biochem J 394:375CrossRefGoogle Scholar
  58. 58.
    Jayasinghe SN, Eagles PAM, Qureshi AN (2006) Electric field driven jetting: an emerging approach for processing living cells. Biotechnol J 1:86CrossRefGoogle Scholar
  59. 59.
    Jayasinghe SN, Qureshi AN, Eagles PAM (2006) Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells. Small 2:216CrossRefGoogle Scholar
  60. 60.
    Bocanegra R, Galan D, Marquez M, Loscertales I, Barrero A (2005) Multiple electrosprays emitted from an array of holes. J Aerosol Sci 36:1387CrossRefGoogle Scholar
  61. 61.
    Loscertales G (2002) Micro/nano encapsutation via electrified coaxial liquid jets. Science 295:1695CrossRefGoogle Scholar
  62. 62.
    Colina M, Serra P, Fernandez-Pradas JM, Sevilla L, Morenza JL (2005) DNA deposition through laser induced forward transfer. Biosensors & Bioelectronics 20:1638CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bradley R. Ringeisen
  • Jason A. Barron
  • Daniel Young
  • Christina M. Othon
  • Doug Ladoucuer
  • Peter K. Wu
  • Barry J. Spargo

There are no affiliations available

Personalised recommendations