To cure or contain a disease is to selectively eliminate or restrain the disorder caused by the pathogen, the human body, or both, and at the same time to minimize damage to the healthy parts. The quest of drug discovery is to identify the causes of the phenotype of the disease, and to interfere with the abnormal gene or gene product in such a manner that the disease is cured. Selectivity for just the aberrant gene products remains the critical point throughout the modern drug discovery process.


Partial Little Square Molecular Docking Virtual Screening Pharmacophore Model Multivariate Adaptive Regression Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E.H.2002. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. B58:380–388.Google Scholar
  2. Anderson, W.F. 1992. Human gene therapy. Science 256:808–813.ADSCrossRefGoogle Scholar
  3. Atkins, P.W., and Friedman, R.S. 1999. Molecular Quantum Mechanics. Oxford, Oxford University Press.Google Scholar
  4. Bailon, P., Palleroni, A., Schaffer, C.A., Spence, C.L., Fung, W.J., Porter, J.E., Ehrlich, G.K., Pan, W., Xu, Z.X., Modi, M.W., Farid, A., Berthold, W., and Graves, M. 2001. Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12:195–202.CrossRefGoogle Scholar
  5. Barril, X., Hubbard, S.J., and Morley, S.D. 2004. Virtual screening in structure-based drug discovery. Mini-Rev. Med. Chem. 4:779–791.Google Scholar
  6. Barrow, H.G., and Burstall, R.M. 1976. Subgraph isomorphism, matching relational structures and maximal cliques. Inf. Process. Lett. 4:83–84.MATHCrossRefGoogle Scholar
  7. Baxter, C.A., Murray, C.W., Waszkowycz, B., and Young, S.S. 1998. Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins 33:367–382.CrossRefGoogle Scholar
  8. Bemis, J.W., and Murcko, M.A. 1996. The properties of known drugs. 1. Molecular Frameworks. J. Med. Chem. 39:2887–2893.CrossRefGoogle Scholar
  9. Berg, D.T., Gerlitz, B., Shang, J., Smith, T., Santa, P., Richardson, M.A., Kurz, K.D., Grinnell, B.W., Mace, K., and Jones, B.E. 2003. Engineering the proteolytic specificity of activated protein C improves its pharmacological properties. Proc. Natl. Acad. Sci. USA 100:4423–4428.ADSCrossRefGoogle Scholar
  10. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235–242.CrossRefGoogle Scholar
  11. Bissantz, C., Folkers, G., and Rognan, D. 2000. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 43:4759–4767.CrossRefGoogle Scholar
  12. Biswal, B.K., Cherney, M.M., Wang, M., Chan, L., Yannopoulos, C.G., Bilimoria, D., Nicolas, O., Bedard, J., and James, M.N. 2005. Crystal structures of the RNA dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J. Biol. Chem. 280:18202–18210.CrossRefGoogle Scholar
  13. Bohm, H.-J. 1994. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known threedimensional structure. J. Comput. Aid. Mol. Des. 8:243–256.ADSCrossRefGoogle Scholar
  14. Bostroem, J. 2001. Reproducing the conformations of protein-bound ligands: A critical evaluation of several popular conformational searching tools. J. Comput. Aid. Mol. Des. 15:1137–1152.CrossRefGoogle Scholar
  15. Brint, A.T., and Willett, P. 1987. Algorithms for the identification of threedimensional maximal common substructures. J. Chem. Inf. Comput. Sci. 27:152–158.Google Scholar
  16. Brooijmans, N., and Kuntz, I.D. 2003. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32:335–373.CrossRefGoogle Scholar
  17. Carbó, R., Leyda, L., and Amau, M. 1980. How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int. J. Quantum Chem. 17:1185–1189.CrossRefGoogle Scholar
  18. Cavasotto, C.N., and Abagyan, R. 2004. Protein flexibility in ligand docking and virtual screening to protein kinases. J. Mol. Biol. 337:209–225.CrossRefGoogle Scholar
  19. Charifson, P.S., Corkery, J.J., Murcko, M.A., and Walters, W.P. 1999. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42:5100–5109.CrossRefGoogle Scholar
  20. Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H.W., McKay, P., de Vos, A.M., and Lowman, H.B. 1999. Selection and analysis of an optimized anti-VEGF antibody: Crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293:865–881.CrossRefGoogle Scholar
  21. Clark, R.D., Strizhev, A., Leonard, J.M., Blake, J.F., and Matthews, J.B. 2002. Consensus scoring for ligand/protein interactions. J. Mol. Graph. Mod. 20:281–295.CrossRefGoogle Scholar
  22. Corno, F., Prinetto, P., and Reorda, M.S. 1995. Using symbolic techniques to find the maximum clique in very large sparse graphs. IEEE European Design and Test Conference, ED&TC’95, Paris.Google Scholar
  23. Cramer, R.D., III, Paterson, D.E., and Bunce, J.D. 1988. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J.Am. Chem. Soc. 110:5959–5967.CrossRefGoogle Scholar
  24. Crum Brown, A., and Fraser, T.R. 1868. On the connection between chemical constitution and physiologic action. Part 1. On the physiological action of salts of the ammonium bases, derived from strychnia, brucia, thebia, codeia, morphia and nitotia. Trans. R. Soc. Edinburgh 25:151–203.Google Scholar
  25. Dahiyat, B.I., and Mayo, S.L. 1997. De novo protein design: Fully automated sequence selection. Science 278:82–87.CrossRefGoogle Scholar
  26. Demeter, D.A., Weintraub, H.J., and Knittel, J.J. 1998. The local minima method (LMM) of pharmacophore determination: A protocol for predicting the bioactive conformation of small, conformationally flexible molecules. J. Chem. Inf. Comput. Sci. 38:1125–1136.Google Scholar
  27. DePristo, M.A., De Bakker, P.I.W., and Blundell, T.L. 2004. Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure 12:831–838.CrossRefGoogle Scholar
  28. DesJarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., Ortiz de Montellano, P.R., DeCamp, D.L., Babe, L.M., and Craik, C.S. 1990. Structure-based design of nonpeptide inhibitors specific for human immunodeficiency virus 1 protease. Proc. Natl. Acad. Sci. USA 87:6644–6648.ADSCrossRefGoogle Scholar
  29. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.J.P. 1985. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902–3909.CrossRefGoogle Scholar
  30. DeWitte, R.S., and Shakhnovich, E.I. 1996. SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J. Am. Chem. Soc. 118:11733–11744.CrossRefGoogle Scholar
  31. Diller, D.J., and Merz, K.M., Jr. 2001. High throughput docking for library design and library prioritization. Proteins 43:113–124.CrossRefGoogle Scholar
  32. Draper, N.R., and Smith, H. 1981. Applied Regression Analysis, 2nd ed. New York, Wiley.MATHGoogle Scholar
  33. Drews, J. 2000. Drug discovery: A historical perspective. Science 287:1960–1964.ADSCrossRefGoogle Scholar
  34. Drews, J. 2003. Strategic trends in the drug industry. Drug Discov. Today 8:411–420.CrossRefGoogle Scholar
  35. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., and Mee, R.P. 1997. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aid. Mol. Des. 11:425–445.CrossRefGoogle Scholar
  36. Elliott, S., Lorenzini, T., Asher, S., Aoki, K., Brankow, D., Buck, L., Busse, L., Chang, D., Fuller, J., Grant, J., Hernday, N., Hokum, M., Hu, S., Knudten, A., Levin, N., Komorowski, R., Martin, F., Navarro, R., Osslund, T., Rogers, G., Rogers, N., Trail, G., and Egrie, J. 2003. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol 21:414–421.CrossRefGoogle Scholar
  37. Eros, D., Keri, G., Kovesdi, I., Szantai-Kis, C., Meszaros, G., and Orfi, L. 2004. Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods. Mini. Rev. Med. Chem. 4:167–177.CrossRefGoogle Scholar
  38. Everitt, B., and Dunn, G. 1991. Applied Multivariate Data Analysis. London, Edward Arnold.Google Scholar
  39. Ewing, T.J. A., Makino, S., Skillman, A.G.J., and Kuntz, I.D. 2001. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aid. Mol. Des. 15:411–428.CrossRefGoogle Scholar
  40. Fattori, D. 2004. Molecular recognition: The fragment approach in lead generation. Drug Discov. Today 9:229–238.CrossRefGoogle Scholar
  41. Ferrari, A.M., Wei, B.Q., Constantino, L., and Shoichet, B.K. 2004. Soft docking and multiple receptor conformations in virtual screening. J. Med. Chem. 47:5076–5084.CrossRefGoogle Scholar
  42. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.ADSCrossRefGoogle Scholar
  43. Fischer, E. 1894. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27:2985–2993.CrossRefGoogle Scholar
  44. Foote, J., and Milstein, C. 1994. Conformational isomerism and the diversity of antibodies. Proc. Natl. Acad. Sci. USA 91:10370–10374.ADSCrossRefGoogle Scholar
  45. Friedman, J. 1991. Multivariate adaptive regression splines. Ann. Statist. 19:1–142.MATHMathSciNetCrossRefGoogle Scholar
  46. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., and Shenkin, P.S. 2004. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47:1739–1749.CrossRefGoogle Scholar
  47. Gohlke, H., Hendlich, M., and Klebe, G. 2000. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295:337–356.CrossRefGoogle Scholar
  48. Good, A.C., and Cheney, D.L. 2003. Analysis and optimization of structure-based virtual screening protocols (1): Exploration of ligand conformational sampling techniques. J. Mol. Graph. Mod. 22:23–30.CrossRefGoogle Scholar
  49. Goodsell, D.S., and Olson, A.J. 1990. Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202.CrossRefGoogle Scholar
  50. Grueneberg, S., Stubbs, M.T., and Klebe, G. 2002. Successful virtual screening for novel inhibitors of human carbonic anhydrase: Strategy and experimental confirmation. J. Med. Chem. 45:3588–3602.CrossRefGoogle Scholar
  51. Guha, R, Serra, J.R., and Jurs, P.C. 2004. Generation of QSAR sets with a selforganizing map. J. Mol. Graph. Model. 23:1–14.CrossRefGoogle Scholar
  52. Halperin, I., Ma, B., Wolfson, H., and Nussinov, R. 2002. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47:409–443.CrossRefGoogle Scholar
  53. Hammett, L. 1970. Physical Organic Chemistry. Reaction Rates, Equilibria and Mechanism. New York, McGraw-Hill.Google Scholar
  54. Hansch, C., and Fujita, T. 1964. Rho sigma pi analysis: A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86:1616–1626.CrossRefGoogle Scholar
  55. Head, M.S., Given, J.A., and Gilson, M.K. 1997. “Mining minima”: Direct computation of conformational free energies. J. Phys. Chem. A 101:1609–1618.CrossRefGoogle Scholar
  56. Hermann, T., and Westhof, E. 1998. RNA as a drug target: Chemical, modelling, and evolutionary tools. Curr. Opin. Biotechnol 9:66–73.CrossRefGoogle Scholar
  57. Hoffman, B., Cho, S.J., Zheng, W., Wyrick, S., Nichols, D.E., Mailman, R.B., and Tropsha, A. 1999. Quantitative structure-activity relationship modeling of dopamine D(l) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. J. Med. Chem. 42:3217–3226.CrossRefGoogle Scholar
  58. Hohenberg, H., and Kohn, W. 1964. Inhomogeneous electron gas. Phys. Rev. E 136:B864–B871.MathSciNetADSCrossRefGoogle Scholar
  59. Holash, J., Davis, S., Papadopoulos, N., Croll, S.D., Ho, L., Russell, M., Boland, P., Leidich, R., Hylton, D., Burova, E., Ioffe, E., Huang, T., Radziejewski, C., Bailey, K., Fandl, J.P., Daly, T., Wiegand, S.J., Yancopoulos, G.D., and Rudge, J.S. 2002. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99:11393–11398.ADSCrossRefGoogle Scholar
  60. Holland, J. 1975. Adaption in Natural and Artificial Systems. Ann Arbor, University of Michigan Press.Google Scholar
  61. Holliger, P., and Hudson, P.J. 2005. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol 23:1126–1136.CrossRefGoogle Scholar
  62. Honma, T. 2003. Recent advances in de novo design strategy for practical lead identification. Med. Res. Rev. 23:606–632.CrossRefGoogle Scholar
  63. Huo, S., Wang, J., Cieplak, P., Kollman, P.A., and Kuntz, I.D. 2002. Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: Insight into structure-based ligand design. J. Med. Chem. 45:1412–1419.CrossRefGoogle Scholar
  64. Isaacs, A., and Lindenmann, J. 1957. Virus Interference. I. The interferon. Proc. R. Soc. London Ser B. 147:258–267.ADSCrossRefGoogle Scholar
  65. Ishchenko, A.V., and Shakhnovich, E.I. 2002. SMall Molecule Growth 2001 (SMoG2001): An improved knowledge-based scoring function for proteinligand interactions. J. Med. Chem. 45:2770–2780.CrossRefGoogle Scholar
  66. Jain, A.N. 2003. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 46:499–511.CrossRefGoogle Scholar
  67. Jones, G., Willett, P., and Glen, R.C. 1995. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245:43–53.CrossRefGoogle Scholar
  68. Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267:727–748.CrossRefGoogle Scholar
  69. Joseph-McCarthy, D., Thomas, B.E., IV, Berlmarsh, M., Moustakas, D., and Alvarez, J.C. 2003. Pharmacophore-based molecular docking to account for ligand flexibility. Proteins 51:172–188.CrossRefGoogle Scholar
  70. Kallblad, P., Todorov, N.P., Willems, H.M.G., and Alberts, I.L. 2004. Receptor flexibility in the in silico screening of reagents in the SI’ pocket of human colla-genase. J. Med. Chem. 47:2761–2767.CrossRefGoogle Scholar
  71. Kaminski, J.J., Rane, D.F., Snow, M.E., Weber, L., Rothofsky, M.L., Anderson, S.D., and Lin, S.L. 1997. Identification of novel farnesyl protein transferase inhibitors using three-dimensional database searching methods. J. Med. Chem. 40:4103–4112.CrossRefGoogle Scholar
  72. Kellenberger, E., Rodrigo, J., Muller, P., and Rognan, D. 2004. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242.CrossRefGoogle Scholar
  73. Kellermann, S.A., and Green, L.L. 2002. Antibody discovery: The use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr. Opin. Biotechnol. 13:593–597.CrossRefGoogle Scholar
  74. Kerns, E.H., and Di, L. 2003. Pharmaceutical profiling in drug discovery. Drug Discov. Today 8:316–323.CrossRefGoogle Scholar
  75. Kier, L.B. 1971. Molecular Orbital Theory in Drug Research. New York, Academic Press.Google Scholar
  76. Kirkpatrick, S., Gelatt, C.D., Jr., and Vecchi, M.P. 1983. Optimization by simulated annealing. Science 220:671–680.MathSciNetADSCrossRefGoogle Scholar
  77. Knegtel, R.M.A., Kuntz, I.D., and Oshiro, C.M. 1997. Molecular docking to ensembles of protein structures. J. Mol. Biol. 266:424–440.CrossRefGoogle Scholar
  78. Knegtel, R.M.A., and Wagener, M. 1999. Efficacy and selectivity in flexible database docking. Proteins 37: 334–345.CrossRefGoogle Scholar
  79. Kohler, G., and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.ADSCrossRefGoogle Scholar
  80. Koller, D., and Sahami, M. 1996. Toward optimal feature selection. Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, July 1996, pp. 284–292.Google Scholar
  81. Kollman, P.A. 1993. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 93:2395–2417.CrossRefGoogle Scholar
  82. Kollman, P.A. 1994. Theory of macromolecule-ligand interactions. Curr. Opin. Struc. Biol. 4:240–245.CrossRefGoogle Scholar
  83. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., and Cheatham, T.E.I. 2000. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Account Chem. Res. 33:889–897.CrossRefGoogle Scholar
  84. Kontoyianni, M., Sokol, G.S., and McClellan, L.M. 2004. Evaluation of library ranking efficacy in virtual screening. J. Comput. Chem. 26:11–22.CrossRefGoogle Scholar
  85. Koshland, D. 1958. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44:98–104.ADSCrossRefGoogle Scholar
  86. Kovesdi, I., Dominguez-Rodriguez, M.F., Orfi, L., Naray-Szabo, G., Varro, A., Papp, J.G., and Matyus, P. 1999. Application of neural networks in structure-activity relationships. Med. Res. Rev. 19:249–269.CrossRefGoogle Scholar
  87. Kubinyi, H. 1994. [The key to the castle. II. Hansch analysis, 3d-QSAR and de novo design]. Pharm. Unserer Zeit 23:281–290.CrossRefGoogle Scholar
  88. Kubinyi, H., Hamprecht, F. A., and Mietzner, T. 1998. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem. 41:2553–2564.CrossRefGoogle Scholar
  89. Kuntz, I.D. 1992. Structure-based strategies for drug design and discovery. Science 257:1078–1082.ADSCrossRefGoogle Scholar
  90. Leach, A.R. 1994. Ligand docking to proteins with discrete side-chain flexibility. J. Mol. Biol. 235:345–356.CrossRefGoogle Scholar
  91. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25.CrossRefGoogle Scholar
  92. Liu, M., and Wang, S.M. 1999. MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J. Comput. Aid. Mol. Des. 13:435–451.CrossRefGoogle Scholar
  93. Livingstone, D.J., Hesketh, G., and Clayworth, D. 1991. Novel method for the display of multivariate data using neural networks. J. Mol. Graph. 9:115–158.CrossRefGoogle Scholar
  94. Lopez-Rodriguez, M.L., Porras, E., Benhamu, B., Ramos, J.A., Morcillo, M.J., and Lavandera, J.L. 2000. First pharmacophoric hypothesis for 5-HT7 antagonism. Bioorg. Med. Chem. Lett. 10:1097–1100.CrossRefGoogle Scholar
  95. Lorber, D.M., and Shoichet, B.K. 1998. Flexible ligand docking using conformational ensembles. Protein Sci. 7:938–950.CrossRefGoogle Scholar
  96. Luo, H., and Sharp, K.A. 2002. On the calculation of absolute macromolecular binding free energies. Proc. Natl. Acad. Sci. USA 99:10399–10404.ADSCrossRefGoogle Scholar
  97. Luo, P., Hayes, R.J., Chan, C., Stark, D.M., Hwang, M.Y., Jacinto, J.M., Juwadi, P., Chung, H.S., Kundu, A., Ary, M.L., and Dahiyat, B.I. 2002. Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening. Protein Sci. 11:1218–1226.CrossRefGoogle Scholar
  98. Marchand-Geneste, N., and Carpy, A.J. 2004. e-Quantum chemistry free resources. SAR QSAR Environ. Res. 15:43–54.CrossRefGoogle Scholar
  99. Marriott, D.P., Dougall, I.G., Meghani, P., Liu, Y.J., and Flower, D.R. 1999. Lead generation using pharmacophore mapping and three-dimensional database searching: application to muscarinic M(3) receptor antagonists. J. Med. Chem. 42:3210–3216.CrossRefGoogle Scholar
  100. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A., and Dunn, D.A. 1979. The conformational parameter in drug design: The active analog approach. ACS Symp. Ser. 112:205–226.CrossRefGoogle Scholar
  101. Marti-Renom, M.A., Stuart, A., Fiser, A., Sanchez, R., Melo, F., and Sali, A. 2000. Comparative protein structure modeling of genes and genomes. Annu. Rev. Bioph. Biomol. Struct. 29:291–325.CrossRefGoogle Scholar
  102. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I., and Pavlik, P.A. 1993. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J. Comput. Aided Mol. Des. 7:83–102.ADSCrossRefGoogle Scholar
  103. Mayer, D., Naylor, C.B., Motoc, I., and Marshall, G.R. 1987. A unique geometry of the active site of angiotensin-converting enzyme consistent with structureactivity studies. J. Comput. Aided Mol. Des. 1:3–16.ADSCrossRefGoogle Scholar
  104. McGann, M., Almond, H., Nicholls, A., Grant, J.A., and Brown, F 2003. Gaussian docking functions. Biopolymers 68:76–90.CrossRefGoogle Scholar
  105. McGovern, S.L., and Shoichet, B.K. 2003. Information decay in molecular docking screen against holo, apo, and modeled conformations of enzymes. J. Med. Chem. 46:2895–2907.CrossRefGoogle Scholar
  106. McWeeny, R. 1992. Methods of Molecular Quantum Mechanics. London, Academic Press.Google Scholar
  107. Meng, E.C., Shoichet, B.K., and Kuntz, I.D. 1992. Automated docking with gridbased energy evaluation. J. Comput. Chem. 13:505–524.CrossRefGoogle Scholar
  108. Mitchell, J.B.O., Laskowski, R.A., Alex, A., and Thornton, J.M. 1999. BLEEP-Potential of mean force describing protein-ligand interactions: I. Generating potential.J Comput. Chem. 20:1165–1176.CrossRefGoogle Scholar
  109. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19:1639–1662.CrossRefGoogle Scholar
  110. Muegge, I., and Martin, Y.C. 1999. A general and fast scoring function for proteinligand interactions: A simplified potential approach. J. Med. Chem. 42:791–804.CrossRefGoogle Scholar
  111. Murray, C.W., Baxter, C.A., and Frenkel, A.D. 1999. The sensitivity of the results of molecular docking to induced effects: Application to thrombin, thermolysin, and neuraminidase. J. Comput. Aid. Mol. Des. 13:547–562.CrossRefGoogle Scholar
  112. Oshiro, C.M., Bradley, E.K., Eksterowicz, J., Evensen, E., Lamb, M.L., Lanctot, J.K., Putta, S, R. S, PDJ. G 2004. Performance of 3D-database molecular docking studies into homology models. J. Med. Chem. 47:764–767.CrossRefGoogle Scholar
  113. Pargellis, C., Tong, L., Churchill, L., Cirillo, P.E, Gilmore, T., Graham, A.G., Grob, P.M., Hickey, E.R., Moss, N., Pav, S., and Regan, J. 2002. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9:268–272.CrossRefGoogle Scholar
  114. Peng, H., Huang, N., Qi, J., Xie, P., Xu, C., Wang, J., and Yang, C. 2003. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening. Bioorg. Med. Chem. Lett. 13:3693–3699.CrossRefGoogle Scholar
  115. Perola, E., and Charifson, P.S. 2004. Conformational analysis of drug-like molecules bound to proteins: An extensive study of ligand reorganization upon binding. J. Med. Chem. 47:2499–2510.CrossRefGoogle Scholar
  116. Perola, E., Walters, W.P., and Charifson, P.S. 2004. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56:235–249.CrossRefGoogle Scholar
  117. Pople, J.A., and Beveridge, D.L. 1970. Approximate Molecular Orbital Theory. New York, McGraw-Hill.Google Scholar
  118. Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. 1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261:470–489.CrossRefGoogle Scholar
  119. Rastelli, G., Ferrari, A.M., Constantino, L., and Gamberini, M.C. 2002. Discovery of new inhibitors of aldose reductase from molecular docking and database screening. Bioorg. Med. Chem. 10:1437–1450.CrossRefGoogle Scholar
  120. Ravetch, J.V, and Bolland, S. 2001. IgG Fc receptors. Annu. Rev. Immunol 19:275–290.CrossRefGoogle Scholar
  121. Ray, L.C., and Kirsch, R.A. 1957. Finding chemical records by digital computers. Science 126:814–819.ADSCrossRefGoogle Scholar
  122. Rizzo, R.C., Tirado-Rives, I, and Jorgensen, W.L. 2001. Estimation of binding affinities for HEPT and nevirapine analogues with HIV-1 reverse transcriptase via Monte Carlo simulations. J. Med. Chem. 44:145–154.CrossRefGoogle Scholar
  123. Sarkar, C.A., Lowenhaupt, K., Horan, T., Boone, T.C., Tidor, B., and Lauffenburger, D.A. 2002. Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching.” Nat. Biotechnol. 20:908–913.CrossRefGoogle Scholar
  124. Schapira, M., Raaka, B.M., Das, S., Fan, L., Totrov, M., Zhou, Z., Wilson, S.R., Abagyan, R., and Samuels, H.H. 2003. Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proc. Natl. Acad. Sci. USA 100:7354–7359.ADSCrossRefGoogle Scholar
  125. Schapira, M., Raaka, B.M., Samuels, H.H., and Abagyan, R. 2001. In silico discovery of novel retinoic acid receptor agonist structures. BMC Struct. Biol. 1:1.CrossRefGoogle Scholar
  126. Schapira, M., Totrov, M., and Abagyan, R. 1999. Prediction of the binding energy for small molecules, peptides and proteins. J. Mol. Recognit. 12:177–190.CrossRefGoogle Scholar
  127. Shao, J. 1993. Linear-model selection by cross-validation. J.Am. Stat.Assoc. 88:486–494.MATHCrossRefGoogle Scholar
  128. Shields, R.L., Lai, J., Keck, R., O’Connell, L. Y., Hong, K., Meng, Y.G., Weikert, S.H., and Presta, L.G. 2002. Lack of fucose on human IgGl N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277:26733–26740.CrossRefGoogle Scholar
  129. Shields, R.L., Namenuk, A.K., Hong, K., Meng, Y.G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadien, A., Li, B., Fox, J.A., and Presta, L.G. 2001. High resolution mapping of the binding site on human IgGl for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgGl variants with improved binding to the Fc gamma R. J. Biol. Chem. 276:6591–6604.CrossRefGoogle Scholar
  130. Smallshaw, J.E., Ghetie, V, Rizo, J., Fulmer, J.R., Trahan, L.L., Ghetie, M.A., and Vitetta, E.S. 2003. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol. 21:387–391.CrossRefGoogle Scholar
  131. Smellie, A., Teig, S.L., and Towbin, P. 1995. Poling-promoting conformational variation. J. Comput. Chem. 16:171–187.CrossRefGoogle Scholar
  132. Stahl, M., and Rarey, M. 2001. Detailed analysis of scoring functions for virtual screening. J. Med. Chem. 44:1035–1042.CrossRefGoogle Scholar
  133. Stewart, J.J.P. 1989. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10:209–220.CrossRefGoogle Scholar
  134. Sun, H., El Yazal, J., Lockridge, O., Schopfer, L.M., Brimijoin, S., and Pang, Y.P. 2001. Predicted Michaelis-Menten complexes of cocainebutyrylcholinesterase. Engineering effective butyrylcholinesterase mutants for cocaine detoxication. J. Biol. Chem. 276:9330–9336.CrossRefGoogle Scholar
  135. Sussenguth, E. J. 1965. A graph-theoretic algorithm for matching chemical structures. J. Chem. Doc. 5:36–43.CrossRefGoogle Scholar
  136. Swanson, J.M.J., Henchman, R.H., and McCammon, J.A. 2004. Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 86:67–74.CrossRefGoogle Scholar
  137. Teague, S.J., Davis, A.M., Leeson, P.D., and Oprea, T.I. 1999. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl. 38:3743–3748.CrossRefGoogle Scholar
  138. Totrov, M., and Abagyan, R. 1997. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl. 1:215–220.Google Scholar
  139. Toy-Palmer, A., Wu, H., and Liu, X. 1999. Ligand docking in a muscarinic G proteincoupled receptor model. Med. Chem. Res. 9:565–578.Google Scholar
  140. Trosset, J.-Y, and Scheraga, H.A. 1998. Reaching the global minimum in docking simulations: A Monte Carlo energy minimization approach using Bezier splines. Proc. Natl. Acad. Sci. USA 95:8011–8015.ADSCrossRefGoogle Scholar
  141. Van de Waterbeemd, H., and Gifford, E. 2003. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug. Disc. 2:192–204.CrossRefGoogle Scholar
  142. van Drie, J.H. 2004. Pharmacophore discovery: A critical review. In Computational Medicinal Chemistry for Drug Discovery, Bultinck, P., de Winter, H., Langenaeker, W., and Tollenaere, J.P. (eds.). New York, Dekker; pp. 437–460.Google Scholar
  143. van Drie, J.H., and Nugent, R.A. 1998. Addressing the challenges of combinatorial chemistry: 3D databases, pharmacophore recognition and beyond. SAR QSAR Environ. Res. 9:1–24.CrossRefGoogle Scholar
  144. Vapnik, V. 1979. Estimation of Dependencies Based on Empirical Data. Moscow, Nauka.Google Scholar
  145. Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., and Taylor, R.D. 2003. Improved protein-ligand docking using GOLD. Proteins 52:609–623.CrossRefGoogle Scholar
  146. Verkhivker, G.M., Appelt, K., Freer, S.T., and Villafranca, J.E. 1995. Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. Protein Eng. 8:677–691.CrossRefGoogle Scholar
  147. Verkhivker, G.M., Bouzida, D., Gehlaar, D.K., Rejto, P.A., Arthurs, S., Colson, A.B., Freer, S.T., Larson, V., Luty, B.A., Marrone, T., and Rose, P.W. 2000. Deciphering common failures in molecular docking of ligand-protein complexes. J. Comput. Aid. Mol. Des. 14:731–751.CrossRefGoogle Scholar
  148. Wang, J., Morin, P., Wang, W., and Kollman, P.A. 2001. Use of MM-PBSA in reproducing the binding free energies to HIV-1RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 123:5221–5230.CrossRefGoogle Scholar
  149. Wang, R., Lu, Y., and Wang, S. 2003. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. 46:2287–2303.CrossRefGoogle Scholar
  150. Warren, G.L., Andrews, C.W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert, M.H., Lindvall, M., Nevins, N., Semus, S.F., Senger, S., Tedesco, G., Wall, I.D., Woolven, J.M., Peishoff, C.E., and Head, M.S. 2005. A critical assessment of docking programs and scoring functions. J. Med. Chem. ASAP Article.Google Scholar
  151. Wehrens, R., Putter, H., and Buydens, L.M.C. 2000. The bootstrap: A tutorial. Chemo. Intell. Lab. Syst. 54:35–52.CrossRefGoogle Scholar
  152. Welch, W., Ruppert, J., and Jain, A.N. 1996. HAMMERHEAD: Fast, fully automated docking of flexible ligands to protein binding sites. Chem. Biol. 3:449–463.CrossRefGoogle Scholar
  153. Wikel, J.H. and Dow, E.R. 1993. The use of neural networks for variable selection in QSAR. Bioorg. Med. Chem. Lett. 3:645–651.CrossRefGoogle Scholar
  154. Willett, P. 1987. Similarity and Clustering in Chemical Information Systems. New York, Research Studies Press, Wiley.Google Scholar
  155. Wold, S., and Eriksson, L. 1995. Statistical validation of QSAR results. In Chemometric Methods in Molecular Design, van de Waterbeemd, H., ed. New York, VCH, pp. 309–318.CrossRefGoogle Scholar
  156. Worn, A., and Pluckthun, A. 2001. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305:989–1010.CrossRefGoogle Scholar
  157. Wu, S.Y., McNae, I., Kontopidis, G., McClue, S.J., Mclnnes, C., Stewart, K.J., Wang, S., Zheleva, D.I., Marriage, H., Lane, D.P., Taylor, P., Fischer, P.M., and Walkinshaw, M.D. 2003. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: Structural basis for ligand-induced disordering of the activation loop. Structure 11:399–410.CrossRefGoogle Scholar
  158. Xue, C.X., Zhang, R.S., Liu, H.X., Yao, X.J., Liu, M.C., Hu, Z.D., and Fan, B.T. 2004. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. J. Chem. Inf. Comput. Sci. 44:1693–1700.Google Scholar
  159. Yao, X.J., Panaye, A., Doucet, J.P., Zhang, R.S., Chen, H.F., Liu, M.C., Hu, Z.D., and Fan, B.T. 2004. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci. 44:1257–1266.Google Scholar
  160. Yuan, H., Kozikowski, A.P., and Petukhov, P.A. 2004. CoMFA study of piperidine analogues of cocaine at the dopamine transporter: Exploring the binding mode of the 3 alpha-substituent of the piperidine ring using pharmacophore-based flexible alignment. J. Med. Chem. 47:6137–6143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kunbin Qu
    • 1
  • Natasja Brooijmans
    • 2
  1. 1.Department of ChemistryRigel Pharmaceuticals, Inc.San Francisco
  2. 2.Chemical and Screening SciencesWyeth ResearchPearl River

Personalised recommendations