Structure Prediction of Membrane Proteins

  • Xiche Hu
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Membrane proteins play a central role in many cellular and physiological processes. It is estimated that integral membrane proteins make up about 20–30% of the proteome (Krogh et al., 2001b; Stevens and Arkin, 2000; von Heijne, 1999). They are essential mediators of material and information transfer across cell membranes. Their functions include active and passive transport of molecules into and out of cells and organelles; transduction of energy among various forms (light, electrical, and chemical energy); as well as reception and transduction of chemical and electrical signals across membranes (Avdonin, 2005; Bockaert et al., 2002; Pahl, 1999; Rehling et al., 2004; Stack et al., 1995). Identifying these transmembrane (TM) proteins and deciphering their molecular mechanisms, then, is of great importance, particularly as applied to biomedicine. Membrane proteins are the targets of a large number of pharmacologically and toxicologically active substances, and are directly involved in their uptake, metabolism, and clearance (Bettler et al., 1998; Cohen, 2002; Heusser and Jardieu, 1997; Tibes et al., 2005; Xu et al., 2005). Despite the importance of membrane proteins, the knowledge of their high-resolution structures and mechanisms of action has lagged far behind in comparison to that of water-soluble proteins: less than 1% of all three-dimensional structures deposited in the Protein Data Bank are of membrane proteins. This unfortunate disparity stems from difficulties in overexpression and the crystallization of membrane proteins (Grisshammer and Tate, 1995; Michel, 1991).


Hide Markov Model Structure Prediction Secondary Structure Prediction Hydrophobicity Scale Hydrophobic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamian, L., Jackups, R., Jr., Binkowski, T.A., and Liang, J. 2003. Higher-order interhelical spatial interactions in membrane proteins. J. Mol. Biol. 327:251–272.Google Scholar
  2. Adamian, L., and Liang, J. 2001. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. J. Mol. Biol. 311:891–907.Google Scholar
  3. Adamian, L., and Liang, J. 2002. Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers. Proteins Struct. Fund Genet. 47:209–218.Google Scholar
  4. Adams, P.D., Arkin, I.T., Engelman, D.M., and Brunger, A.T. 1995. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat. Struct. Biol. 2:154–162.Google Scholar
  5. Adams, P.D., Engelman, D.M., and Brunger, A.T. 1996. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. Proteins Struct. Fund. Genet. 26:257–261.Google Scholar
  6. Ahn, C.S., Yoo, S.J., and Park, H.S. 2002. Prediction for beta-barrel transmembrane protein region using HMM. J. Korea Inf. Sci. Soc. 30:802–804.Google Scholar
  7. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.Google Scholar
  8. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.Google Scholar
  9. Avdonin, P.V. 2005. Structure and signalling properties of G protein-coupled receptor complexes. Biol. Membr. 22:3–26.MathSciNetGoogle Scholar
  10. Bagos, P.G., Liakopoulos, T.D., and Hamodrakas, S.J. 2005. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinformatics 6:art. no.-7.Google Scholar
  11. Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., and Hamodrakas, S.J. 2004a. A hidden Markov model method, capable of predicting and discriminating betabarrel outer membrane proteins. BMC Bioinformatics 5:art. no.-29.Google Scholar
  12. Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., and Hamodrakas, S.J. 2004b. PRED-TMBB: A web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. 32:W400–W404.Google Scholar
  13. Benz, R. 1994. Permeation of hydrophilic solutes through mitochondrial outer membranes—Review on mitochondrial porins. Biochim. Biophys. Acta Rev. Biomembr. 1197:167–196.Google Scholar
  14. Berven, F.S., Flikka, K., Jensen, H.B., and Eidhammer, I. 2004. BOMP: A program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. 32:W394–W399.Google Scholar
  15. Bettler, B., Kaupmann, K., and Bowery, N. 1998. GABA(B) receptors: Drugs meet clones. Curr. Opin. Neurobiol. 8:345–350.Google Scholar
  16. Bigelow, H.R., Petrey, D.S., Liu, J., Przybylski, D., and Rost, B. 2004. Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res. 32:2566–2577.Google Scholar
  17. Bockaert, J., Claeysen, S., Becamel, C., Pinloche, S., and Dumuis, A. 2002. G protein-coupled receptors: Dominant players in cell-cell communication. Int. Rev. Cytol. 212:63–132.Google Scholar
  18. Chen, C.P., Kernytsky, A., and Rost, B. 2002. Transmembrane helix predictions revisited. Protein Sci. 11:2774–2791.Google Scholar
  19. Chen, C.P., and Rost, B. 2002a. Long membrane helices and short loops predicted less accurately. Protein Set. 11:2766–2773.Google Scholar
  20. Chen, C.P., and Rost, B. 2002b. State-of-the-art in membrane protein prediction. Appl. Bioinform. 1:21–35.Google Scholar
  21. Chothia, C. 1974. Hydrophobie bonding and accessible surface area in proteins. Nature 248:338–339.ADSGoogle Scholar
  22. Chou, P.Y., and Fasman, G.D. 1974. Conformational parameters for amino in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 12:211–222.Google Scholar
  23. Cohen, P. 2002. Protein kinases—the major drug targets of the twenty-first century? Nat. Rev. Drug Discovery 1:309–315.Google Scholar
  24. Cornette, J.L., Cease, K.B., Margalit, H., Spouge, J.L., Berzofsky, J.A., and Delisi, C. 1987. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195:659–685.Google Scholar
  25. Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., and Rosenbusch, J.P. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.ADSGoogle Scholar
  26. Crimi, M., and Esposti, M.D. 1991. Structural predictions for membrane proteins—The dilemma of hydrophobicity scales. Trends Biochem. Sci. 16:119.Google Scholar
  27. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. 1997. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method. Protein Eng. 10:673–676.Google Scholar
  28. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M., and Barton, G.J. 1998. JPred: A consensus secondary structure prediction server. Bioinformatics 14:892–893.Google Scholar
  29. Cuthbertson, J.M., Doyle, D.A., and Sansom, M.S.P. 2005. Transmembrane helix prediction: A comparative evaluation and analysis. Protein Eng. Des. Sel. 18:295–308.Google Scholar
  30. Deber, C.M., Wang, C., Liu, L.P., Prior, A.S., Agrawal, S., Muskat, B.L., and Cuticchia, A.J. 2001. TM Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 10:212–219.Google Scholar
  31. Degli Esposti, M., Crimi, M., and Venturoli, G. 1990. A critical evaluation of the hydropathy profile of membrane proteins. Eur. J. Biochem. 190:207–219.Google Scholar
  32. Diederichs, K., Freigang, J., Umhau, S., Zeth, K., and Breed, J. 1998. Prediction by a neural network of outer membrane beta-strand protein topology. Protein Sci. 7:2413–2420.Google Scholar
  33. Dobbs, H., Orlandini, E., Bonaccini, R., and Seno, F 2002. Optimal potentials for predicting inter-helical packing in transmembrane proteins. Proteins 49:342–349.Google Scholar
  34. Eisenberg, D., Weiss, R.M., and Terwilliger, T.C. 1982a. The helical hydrophobic moment—A measure of the amphiphilicity of a helix. Nature 299:371–374.ADSGoogle Scholar
  35. Eisenberg, D., Weiss, R.M., Terwilliger, T.C., and Wilcox, W. 1982b. Hydrophobie moments and protein-structure. Faraday Symp. Chem. Soc. 17:109–120.Google Scholar
  36. Engelman, D.M., Steitz, T.A., and Goldman, A. 1986. Identifying nonpolar transbilayer helices in amino-acid-sequences of membrane-proteins. Annu. Rev. Biophys. Biophys. Chem. 15:321–353.Google Scholar
  37. Fariselli, P., Finelli, M., Marchignoli, D., Martelli, P.L., Rossi, I., and Casadio, R. 2003. MaxSubSeq: An algorithm for segment-length optimization. The case study of the transmembrane spanning segments. Bioinformatics 19:500–505.Google Scholar
  38. Fischbarg, J., Li, J., Cheung, M., Czegledy, F., Iserovich, P., and Kuang, K. 1995. Predictive evidence for a porin-type beta-barrel fold in Chip28 and other members of the Mip family—A restricted-pore model common to water channels and facilitators. J. Membrane Biol. 143:177–188.Google Scholar
  39. Fischer, K., Weber, A., Brink, S., Arbinger, B., Schunemann, D., Borchert, S., Heldt, H.W., Popp, B., Benz, R., Link, T.A., Eckerskorn, C., and Flugge, U.I. 1994. Porins from plants—Molecular cloning and functional characterization of two new members of the porin family. J. Biol. Chem. 269:25754–25760.Google Scholar
  40. Fleishman, S.J., and Ben-Tal, N. 2002. A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices. J. Mol. Biol. 321:363–378.Google Scholar
  41. Fleishman, S.J., Harrington, S., Friesner, R.A., Honig, B., and Ben-Tal, N. 2004. An automatic method for predicting transmembrane protein structures using cryo-EM and evolutionary data. Biophys. J. 87:3448–3459.ADSGoogle Scholar
  42. Goder, V., and Spiess, M. 2001. Topogenesis of membrane proteins: Determinants and dynamics. FEBS Lett. 504:87–93.Google Scholar
  43. Grisshammer, R., and Tate, C.G. 1995. Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28:315–422.Google Scholar
  44. Gromiha, M.M., Ahmad, S., and Suwa, M. 2004. Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins. J. Comput. Chem. 25:762–767.Google Scholar
  45. Gromiha, M.M., Majumdar, R., and Ponnuswamy, P.K. 1997. Identification of membrane spanning beta strands in bacterial porins. Protein Eng. 10:497–500.Google Scholar
  46. Gromiha, M.M., and Ponnuswamy, P.K. 1993. Prediction of transmembrane betastrands from hydrophobic characteristics of proteins. Int. J. Pept. Protein Res. 42:420–431.Google Scholar
  47. Hartmann, E., Rapoport, T.A., and Lodish, H.F 1989. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl Acad. Sci. USA 86:5786–5790.ADSGoogle Scholar
  48. Heusser, C., and Jardieu, P. 1997. Therapeutic potential of anti-IgE antibodies. Curr. Opin. Immunol. 9:805–813.Google Scholar
  49. Hirokawa, T., Boon-Chieng, S., and Mitaku, S. 1998. SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379.Google Scholar
  50. Hofmann, K., and Stoffel, W. 1993. TMBASE—A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374:166.Google Scholar
  51. Hopp, T.P., and Woods, K.R. 1981. Prediction of protein antigenic determinants from amino-acid sequences. Proc. Nat. Acad. Sci. USA 78:3824–3828.ADSGoogle Scholar
  52. Hu, X.C., Xu, D., Hamer, K., Schulten, K., Koepke, J., and Michel, H. 1995. Predicting the structure of the light-harvesting complex-II of Rhodospirillum molischianum. Protein Sci. 4:1670–1682.Google Scholar
  53. Ikeda, M., Arai, M., Lao, D.M., and Shimizu, T. 2002. Transmembrane topology prediction methods: A re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol. 2:19–33.Google Scholar
  54. Jacoboni, I., Martelli, P.L., Fariselli, P., De Pinto, V., and Casadio, R. 2001. Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci. 10:779–787.Google Scholar
  55. Jayasinghe, S., Hristova, K., and White, S.H. 2001a. Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312:927–934.Google Scholar
  56. Jayasinghe, S., Hristova, K., and White, S.H. 2001b. MPtopo: A database of membrane protein topology. Protein Sci. 10:455–458.Google Scholar
  57. Jones, D.T., Taylor, W.R., and Thorton, J.M. 1994. A model recognition approach to the prediction of all-helical membrane-protein structure and topology. Biochemistry 33:3038–3049.Google Scholar
  58. Juretic, D., Jeroncic, A., and Zucic, D. 1999. Sequence analysis of membrane proteins with the Web server SPLIT. Croat. Chem. Acta 72:975–997.Google Scholar
  59. Juretic, D., and Lucin, A. 1998. The preference functions method for predicting protein helical turns with membrane propensity. J. Chem. Inf. Comput. Sci. 38:575–585.Google Scholar
  60. Kabsch, W., and Sander, C. 1983. Dictionary of protein secondary structure—Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637.Google Scholar
  61. Kessel, A., and Ben-Tal, N. 2002. Free energy determinants of peptide association with lipid bilayers. In Simon, S., and McIntosh, T. eds.), Peptide-Lipid Interactions. San Diego, Academic Press, Vol. 52, pp. 205–253.Google Scholar
  62. Kim, S., Chamberlain, A.K., and Bowie, J.U. 2003. A simple method for modeling transmembrane helix oligomers. J. Mol. Biol. 329:831–840.Google Scholar
  63. Klein, P., Kanehisa, M., and DeLisi, C. 1985. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815:468–476.Google Scholar
  64. Koepke, J., Hu, X.C., Muenke, C., Schulten, K., and Michel, H. 1996. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4:581–597.Google Scholar
  65. Krogh, A., Larsson, B., vonHeijne, G., and Sonnhammer, E. 2001a. Predicting transmembrane protein topology with a hidden Markov model—A hidden Markov model for predicting transmembrane helices in protein. J. Mol. Biol. 305:567–580.Google Scholar
  66. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L. 2001b. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567–580.Google Scholar
  67. Kyte, J., and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.Google Scholar
  68. Lehnert, U., Xia, Y., Royce, TE., Goh, C.S., Liu, Y., Senes, A., Yu, H.Y., Zhang, Z.L., Engelman, D.M., and Gerstein, M. 2004. Computational analysis of membrane proteins: Genomic occurrence, structure prediction and helix interactions. Q. Rev. Biophys. 37:121–146.Google Scholar
  69. Levitt, M. 1976. A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol Biol. 104:59–107.Google Scholar
  70. Liang, J. 2002. Experimental and computational studies of determinants of membrane-protein folding. Curr. Opin. Chem. Biol. 6:878–884.Google Scholar
  71. Liu, Q., Zhu, Y.S, Wang, B.H., and Li, Y.X. 2003a. A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins. Comput. Biol. Chem. 27:69–76.Google Scholar
  72. Liu, Q., Zhu, Y.S., Wang, B.H., and Li, Y.X. 2003b. Identification of beta-barrel membrane proteins based on amino acid composition properties and predicted secondary structure. Comput. Biol. Chem. 27:355–361.Google Scholar
  73. Martelli, P.L., Fariselli, P., and Casadio, R. 2003. An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins. Bioinformatics 19(Suppl. l):i205–i211.Google Scholar
  74. Martelli, P.L., Fariselli, P., Krogh, A., and Casadio, R. 2002. A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics 18(Suppl. 1):S46–S53.Google Scholar
  75. McGuffin, L.J., Bryson, K., and Jones, D.T. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16:404–405.Google Scholar
  76. Michel, H. (ed.). 1991. General and Practical Aspects of Membrane Protein Crystallization. Boca Raton, FL, CRC Press.Google Scholar
  77. Miyazawa, S., and Jernigan, R.L. 1996. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256:623–644.Google Scholar
  78. Moller, S., Croning, M.D.R., and Apweiler, R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653.Google Scholar
  79. Monne, M., Hessa, T., Thissen, L., and von Heijne, G. 2005. Competition between neighboring topogenic signals during membrane protein insertion into the ER. FEBS J. 272:28–36.Google Scholar
  80. Nakai, K., and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911.Google Scholar
  81. Nassi, S., Collier, R.J., and Finkelstein, A. 2002. PA(63) channel of anthrax toxin: An extended beta-barrel. Biochemistry 41:1445–1450.Google Scholar
  82. Natt, N.K., Kaur, H., and Raghava, G.P.S. 2004. Prediction of transmembrane regions of beta-barrel proteins using ANN-and SVM-based methods. Proteins Struct. Funct. Bioinform. 56:11–18.Google Scholar
  83. Nikiforovich, G.V, Galaktionov, S., Balodis, J., and Marshall, G.R. 2001. Novel approach to computer modeling of seven-helical transmembrane proteins: Current progress in the test case of bacteriorhodopsin. Acta Biochim. Pol. 48:53–64.Google Scholar
  84. Nilsson, J., Persson, B., and vonHeijne, G. 2000. Consensus predictions of membrane protein topology. FEBS Lett. 486:267–269.Google Scholar
  85. Nozaki, Y., and Tanford, C. 1971. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J. Biol. Chem. 246:2211–2217.Google Scholar
  86. Onuchic, J.N., and Wolynes, P.G. 2004. Theory of protein folding. Curr. Opin. Struct. Biol. 14:70–75.Google Scholar
  87. Pahl, H.L. 1999. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol. Rev. 79:683–701.Google Scholar
  88. Pappu, R.V., Marshall, G.R., and Ponder, J.W. 1999. A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat. Struct. Biol. 6:50–55.Google Scholar
  89. Pasquier, C., and Hamodrakas, S.J. 1999. An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng. 12:631–634.Google Scholar
  90. Pasquier, C., Promponas, V.J., Palaios, G.A., Hamodrakas, J.S., and Hamodrakas, S.J. 1999. A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: The PRED-TMR algorithm. Protein Eng. 12:381–385.Google Scholar
  91. Paul, C., and Rosenbusch, J.P. 1985. Folding patterns of porin and bacteriorhodopsin. EMBO J. 4:1594–1597.Google Scholar
  92. Persson, B., and Argos, P. 1994. Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J. Mol. Biol. 237:182–192.Google Scholar
  93. Persson, B., and Argos, P. 1996. Topology prediction of membrane proteins. Protein Sci. 5:363–371.Google Scholar
  94. Popot, J.L., and Engelman, D.M. 1990. Membrane-protein folding and oligomerization—The 2-stage model. Biochemistry 29:4031–4037.Google Scholar
  95. Rehling, P., Brandner, K., and Pfanner, N. 2004. Mitochondrial import and the twinpore translocase. Nat. Rev. Mol. Cell Biol. 5:519–530.Google Scholar
  96. Rose, G.D. 1978. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature 272:586–590.ADSGoogle Scholar
  97. Rosenbusch, J.P. 2001. Stability of membrane proteins: Relevance for the selection of appropriate methods for high-resolution structure determinations. J. Struct. Biol. 136:144–157.Google Scholar
  98. Rost, B. 2001. Review: Protein secondary structure prediction continues to rise. J. Struct. Biol 134:204–218.Google Scholar
  99. Rost, B., Casadio, R., Fariselli, P., and Sander, C. 1995. Transmembrane helices predicted at 95-percent accuracy. Protein Sci. 4:521–533.CrossRefGoogle Scholar
  100. Rost, B., Fariselli, P., and Casadio, R. 1996. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5:1704–1718.Google Scholar
  101. Rost, B., Yachdav, G., and Liu, J.F. 2004. The PredictProtein server. Nucleic Acids Res. 32:W321–W326.Google Scholar
  102. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning representations by back-propagating errors. Nature 323:533–536.ADSGoogle Scholar
  103. Saaf, A., Johansson, M., Wallin, E., and von Heijne, G. 1999. Divergent evolution of membrane protein topology: The Escherichia coli RnfA and RnfE homologues. Proc. Nat. Acad. Sci. USA 96:8540–8544.ADSGoogle Scholar
  104. Sale, K., Faulon, J.L., Gray, G.A., Schoeniger, J.S., and Young, M.M. 2004. Optimal bundling of transmembrane helices using sparse distance constraints. Protein Sci. 13:2613–2627.Google Scholar
  105. Schirmer, T., and Cowan, S.W. 1993. Prediction of membrane-spanning beta-strands and its application to maltoporin. Protein Sci. 2:1361–1363.Google Scholar
  106. Schulz, G.E. 2000. beta-barrel membrane proteins. Curr. Opi. Struct. Biol. 10:443–447.MathSciNetGoogle Scholar
  107. Schulz, G.E. 2002. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565:308–317.Google Scholar
  108. Senes, A., Engel, D.E., and DeGrado, W.F. 2004. Folding of helical membrane proteins: The role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol 14:465–479.Google Scholar
  109. Senes, A., Gerstein, M., and Engelman, D.M. 2000. Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J. Mol. Biol. 296:921–936.Google Scholar
  110. Song, L.Z., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J.E. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866.ADSGoogle Scholar
  111. Sonnhammer, E.L., von Heijne, G., and Krogh, A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6:175–182.Google Scholar
  112. Spyropoulos, I.C., Liakopoulos, T.D., Bagos, P.G., and Hamodrakas, S.J. 2004. TMRPres2D: High quality visual representation of transmembrane protein models. Bioinformatics 20:3258–3260.Google Scholar
  113. Stack, J.H., Horazdovsky, B., and Emr, S.D. 1995. Receptor-mediated protein sorting to the vacuole in yeast: Roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu. Rev. Cell Dev. Biol. 11:1–33.Google Scholar
  114. Stevens, T.J., and Arkin, I.T. 2000. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins Struct. Funct. Genet. 39:417–420.Google Scholar
  115. Tibes, R., Trent, J., and Kurzrock, R. 2005. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu. Rev. Pharmacol. Toxicol. 45:357–384.Google Scholar
  116. Tusnady, G.E., and Simon, I. 1998. Principles governing amino acid composition of integral membrane proteins: Application to topology prediction. J. Mol. Biol. 283:489–506.Google Scholar
  117. Tusnady, G.E., and Simon, I. 2001. Topology of membrane proteins. J. Chem. Inf. Comput. Sci. 41:364–368.Google Scholar
  118. Ulmschneider, M.B., Sansom, M.S.P., and Di Nola, A. 2005. Properties of integral membrane protein structures: Derivation of an implicit membrane potential. Proteins Struct. Funct. Bioinform. 59:252–265.Google Scholar
  119. Viklund, H., and Elofsson, A. 2004. Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci. 13:1908–1917.Google Scholar
  120. Vogel, H., and Jahnig, F. 1986. Models for the structure of outer-membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J. Mol. Biol. 190:191–199.Google Scholar
  121. von Heijne, G. 1986. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:3021–3027.Google Scholar
  122. von Heijne, G. 1992. Membrane-protein structure prediction—Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225:487–494.Google Scholar
  123. von Heijne, G. 1999. Recent advances in the understanding of membrane protein assembly and structure. Q. Rev. Biophys. 32:285–307.Google Scholar
  124. Wallin, E., and von Heijne, G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7:1029–1038.CrossRefGoogle Scholar
  125. Weiss, M.S., Abele, U., Weckesser, J., Weite, W., Schitz, E., and Schulz, G.E. 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630.ADSGoogle Scholar
  126. Weite, W., Weiss, M.S., Nestel, U., Weckesser, J., Schitz, E., and Schulz, G.E. 1991. Prediction of the general structure of OmpF and PhoE from the sequence and structure of porin from Rhodobacter-Capsulatus—Orientation of porin in the membrane. Biochim. Biophys. Acta 1080:271–274.Google Scholar
  127. White, S.H. 2004. The progress of membrane protein structure determination. Protein Sci. 13:1948–1949.Google Scholar
  128. White, S.H., and Wimley, W.C. 1999. Membrane protein folding and stability: Physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319–365.Google Scholar
  129. Wimley, W.C. 2002. Toward genomic identification of beta-barrel membrane proteins: Composition and architecture of known structures. Protein Sci. 11:301–312.Google Scholar
  130. Xu, K., Bastia, E., and Schwarzschild, M. 2005. Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson’s disease. Pharmacol. Ther. 105:267–310.Google Scholar
  131. Yuan, Z., Mattick, J.S., and Teasdale, R.D. 2004. SVMtm: Support vector machines to predict transmembrane segments. J. Comput. Chem. 25:632–636.Google Scholar
  132. Zemla, A., Venclovas, C., Fidelis, K., and Rost, B. 1999. A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment. Proteins Struct. Funct, and Genet. 34:220–223.Google Scholar
  133. Zhai, Y.F., and Saier, M.H. 2002. The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci. 11:2196–2207.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xiche Hu
    • 1
  1. 1.Department of ChemistryUniversity of ToledoToledo

Personalised recommendations