Phosphoric Acid Fuel Cell Technology

  • Suman Roy Choudhury


Of the hydrogen-oxygen fuel cell systems the most mature is the phosphoric acid fuel cell (PAFC). It operates at 150–190°C and pressure ranging from ambient to 5 atm. PAFC systems use primarily Pt as catalyst both for hydrogen and oxygen electrodes. The operating temperature range of PAFC allows it to take up hydrogen directly from hydrogen sources like reformer gases. Less than one percent of CO present in the reformer gases are not adsorbed on Pt sites owing to high operating temperature. The other components used in PAFC are mainly made of graphite and carbon. All these factors make PAFC a versatile member of the hydrogen-oxygen fuel cell family.


Fuel Cell Catalyst Layer Bipolar Plate Standard Hydrogen Electrode Power Conditioner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony, A. DeCasperis, Richard, Roethlein, J. and Richard Breault, D. Electrode reservoir for a fuel cell. US Patent No. 4,269,642, May 26, 1981.Google Scholar
  2. Appelby, A.J. and Foulkes, F.R. Fuel Cell Handbook. Van Nostrand, New York, 1989.Google Scholar
  3. Aragane, J., Urushibata, H. and Murahashi, T. Journal of Electrochemical Society, 141(7): 1804–1808, July 1994.CrossRefGoogle Scholar
  4. Emmanuel Auer, Gerhard Heinz, Thomas Lehmann, Robert Schwarz and Karl-Anton Starz. Pt/Rh/Fe alloy catalyst for fuel cells and a process for producing the same. US Patent No. 6, 165, 635, December 26, 2000.Google Scholar
  5. David, P. Bloomfield and Ronald Cohen. Pressurized fuel cell power plant. US Patent No. 3,972,731, August 3, 2000.Google Scholar
  6. Breault, Richard, D. Silicon carbide electrolyte retaining matrix. US Patent No. 4,017,664, April 12, 1977.Google Scholar
  7. Breault, Richard, D. Fuel cell electrolyte reservoir layer and method for making. US Patent No. 4,185,145, January 22, 1980.Google Scholar
  8. Calvin L. Bushnell and Harold Russel Kunz. Electrolyte reservoir for a fuel cell. US Patent No. 4,064,322, December 20, 1977.Google Scholar
  9. Caires, M.I., Buzzo, M.L., Ticianelli, E.A. and Gonzalez, E.R. Journal of applied electrochemistry, 27: 19–24, 1997.CrossRefGoogle Scholar
  10. Choudhury, S. Roy, Deshmukh, M. B. and Rengaswamy, R. Journal of power source, 112: 137–152, 2002.CrossRefGoogle Scholar
  11. Choudhury, Suhasini Roy, K.V. Nair, and Rangarajan, J. A process for depositing platinum on to carbon black for fuel cell. Indian patent application No. 1491/del/2004, 2004.Google Scholar
  12. Suman Roy Choudhury, Suhasini Roy Choudhury, J. Rangarajan, and Rengaswamy, R. Journal of power sources, 140: 274–279, 2005.CrossRefGoogle Scholar
  13. Der-tau and Howard Chang, H. Journal of applied electrochemistry, 19: 95–99, 1989.CrossRefGoogle Scholar
  14. Gasteiger. H.A. Journal of physical chemistry, 98: 617, 1994.CrossRefGoogle Scholar
  15. Grevstad, E. Paul and Raymond Gelting, L. Fuel cell electrode cooling system using a non-dielectric coolant. US Patent No. 3,969,145, July 13, 1976.Google Scholar
  16. Jenseit, W., Bohme, O., Leidich, F.U. and Wendt, H. Electrochimica Acta, 38(14): 2115–2120, 1993.CrossRefGoogle Scholar
  17. Kemp, S. Fred and Michael George, A. Sequential catalyzation of fuel cell supported platinum catalyst. US patent No. 3,857,737, December 31, 1974.Google Scholar
  18. Kyong Tae Kim, Jung Tae Hwang, Young Gul Kim, and Jong Shik Chung. Journal of Electrochemical Society, 140(1), January 1993.Google Scholar
  19. Kim Kinoshita. Electrochemical Oxygen Technology. John Wiley & Sons Ltd., 1992.Google Scholar
  20. Lamarine, H. John Jr. Robert Stewart, C. and Raymond Vine, W. Electrode reservoir for a fuel cell. US Patent No. 4,038,463, July 26, 1977.Google Scholar
  21. Maoka, T., Kitai, T., Segawa, N. and Ueno, M. Journal of applied electrochemisrty, 26(12): 1267–1272, 1996.Google Scholar
  22. Miki, H. and Shimizu, A. Applied Energy, 61: 41–56, 1998.CrossRefGoogle Scholar
  23. Mitsuda, K. and Murahashi, T. Journal of applied electrochemistry, 21: 524–530, 1991.CrossRefGoogle Scholar
  24. Petrow, G. Henry and Robert, J. Allen. Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation. US Patent No. 3,992,512, November 16, 1976.Google Scholar
  25. Pozio, A., De Francesco, M., Cemmi, A., Cardellini, F. and Giorgi, L. Journal of power sources, 105: 13–19, 2002.CrossRefGoogle Scholar
  26. Rice, Cynthia, Yuye Tong, Eric Oldfield, and Andrzej Wieckowski. Electrochimica Acta, 43(19–20): 2825–2830, 1998.CrossRefGoogle Scholar
  27. Roques, J., Alfred Anderson, B., Vivek Murthi, S. and Sanjeev Mukerjee. Journal of the Electrochemical Society, 6: E193–E199, 2005.CrossRefGoogle Scholar
  28. Ryu, Young-Gyoon, Su-Il Pyun, Chang-Soo Kim, and Dong-Ryl Shin. Carbon, 36(3): 293–298, 1998.CrossRefGoogle Scholar
  29. Schroll, Craig R. and West Hartford. Liquid electrolyte fuel cell with gas seal. US Patent No. 3,855,002, December 17, 1974.Google Scholar
  30. Song, Rak-Hyun, Dheenadayalan, S. and Dong-Ryl Shin. Journal of power sources, 106: 167–172, 2002.Google Scholar
  31. Song, Rak-Syn, Chang-Soo Kim, and Dong Ryul Shin. Journal of power sources, 86: 289–293, 2000.CrossRefGoogle Scholar
  32. Spearin, W. Process for forming a fuel cell matrix. European patent No. 0,344,089, November 29, 1989.Google Scholar
  33. Stewart and Robert, C. Process for forming a fuel cell matrix. US Patent No. 4,173,662, November 6, 1979.Google Scholar
  34. Tajima, Osamu, Akira Hamada, Junji Tanaka, Yasunorj Yoshimoto, Keiogo Miyal, Nobuyoshi Nishizawa, Masaru Tsutsumi, Tomotoshi Ikenaga ans Kunihiro Nakato, and Kiyoshi Hori. Fuel cell using a separate gas cooling method. US Patent No. 5,541,015, July 30, 1996.Google Scholar
  35. Trocciola, John, C. Dan Elmore, E. and Ronald, J. Stosak. Screen printing fuel cell electrolyte matrices using polyethylene oxide as the inking vehicle. US Patent No. 4,001,042, January 4, 1977.Google Scholar
  36. Wolf Vielstich, Arnold Lamm and Hubert A. Gasteiger editors. Handbook of Fuel Cells, Fundamentals, Technology and applications, volume 1. John Wiley & Sons Ltd., 2003a.Google Scholar
  37. Wolf Vielstich, Arnold Lamm and Hubert A. Gasteiger editors. Handbook of Fuel Cells, Fundamentals, Technology and applications, volume 4. John Wiley & Sons Ltd., 2003b.Google Scholar
  38. Wolf Vielstich, Arnold Lamm and Hubert A. Gasteiger editors. Handbook of Fuel Cells, Fundamentals, Technology and applications, volume 2. John Wiley & Sons Ltd., 2003c.Google Scholar
  39. Wieckowski, Andrej Elena Savionova, Constantinos, R. and Vayens, G. editors. Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker Inc., 2003. 49.Google Scholar

Copyright information

© Anamaya Publishers, New Delhi, India 2007

Authors and Affiliations

  • Suman Roy Choudhury
    • 1
  1. 1.Naval Materials Research LaboratoryDRDOAmbernathIndia

Personalised recommendations