Skip to main content

Direct Alcohol and Borohydride Alkaline Fuel Cells

  • Chapter
Book cover Recent Trends in Fuel Cell Science and Technology

Abstract

The alkaline fuel cell (AFC) was the first fuel cell technology used in many practical services like Apollo space mission and running an automobile (Kordesch et al. 1999, Carrette et al. 2001). It is a low temperature fuel cell technology, which uses hydrogen as a fuel, oxygen or air as oxidant and alkaline solution as electrolyte. The development of AFC technology has reached its peak in the beginning of 1980s (Schulze et al. 2004) but its further development is stopped due to many technical, commercial and safety issues. The research and development on fuel cell is gaining momentum as a new way power generation technology, which is environmental friendly. The main focus of technology development of fuel cells is to increase the power output per unit area of electrode at low cost. The interest in AFC increased again due to more favorable oxygen reduction (Burchardt et al. 2002, Yu et al. 2004) and fuel oxidation reactions (Wang et al. 2003, Rahim et al. 2004) in alkaline condition. Apart from these, the cost, simplicity, efficiency and the possibility to use the non-noble metal catalyst (Schulze et al. 2004, Cifrain et al. 2003a) compared to other low temperature fuel cell technology have given an impetus to the AFC research. A detailed comparison of AFC with polymer electrolyte membrane fuel cell (PEMFC) is given by McLean et al. (2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, V. and Green, R. “Carbon dioxide removal from air for alkaline fuel cells operating with liquid hydrogen-Heat exchanger development”, Int. J. Hydrogen Energy, 21 (1996) 415–421.

    Article  CAS  Google Scholar 

  • Ahuja, V. and Green, R. “Carbon dioxide removal from air for alkaline fuel cells operating with liquid hydrogen-A synergistic advantage”, Int. J. Hydrogen Energy, 23 (1998) 131–137.

    Article  CAS  Google Scholar 

  • Al-Saleh, M.A., Gultekin, S., Al-Zakri, A.S. and Celiker, H. “Effect of Carbon Dioxide on the Performance of Ni/PTFE and Ag/PTFE Electrodes in an Alkaline Fuel Cell” J. Appl. Electrochem., 24 (1994) 575–80.

    Article  CAS  Google Scholar 

  • Amendola, S.C., Onnerud, P., Kelly, M.T., Petillo, P.J., Sharp-Goldman, S.L. and Binder, M. “A novel high power density borohydride-air cell”, J. Power Sources, 84 (1999) 130–133.

    Article  CAS  Google Scholar 

  • Appleby, A.J. and Foulkes, F.R. “Fuel cell handbook”, Van Nostrand Reinhold (1989), 261–312.

    Google Scholar 

  • Bard, A.J. and Faulkner, L.R. “Electrochemical methods: Fundamentals and Applications” John Wiley & Sons, 2nd ed. (2001) 226–260.

    Google Scholar 

  • Burchardt, T., Gouérec, P., Sanchez-Cortezon, E., Karichev, Z. and Miners, J. H. “Alkaline fuel cells: contemporary advancement and limitations”, Fuel, 81 (2002) 2151–2155.

    Article  CAS  Google Scholar 

  • Bezdička, P., Grygar, T., Klápště, B. and Vondrák, J., “MnOx/C composites as electrode materials. I. Synthesis, XRD and cyclic voltammetric investigation”, Electrochim. Acta, 45 (1999) 913–920.

    Article  Google Scholar 

  • Carrette, L., Friedrich, K.A. and Stimming, U. “Fuel cells-fundamentals and applications”, Fuel Cells, 1 (2001) 5–39.

    Article  CAS  Google Scholar 

  • Choudhury, N.A., Raman, R.K., Sampath, S. and Shukla, A.K. “An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, J. Power Sources, 143 (2005) 1–8.

    Article  CAS  Google Scholar 

  • Cifrain, M. and Kordesch, K. “Hydrogen/oxygen (air) fuel cells with alkaline electrolytes”, in: “Handbook of fuel cells-fundamentals, technology and applications”, Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds.), John Wiley, Vol. 1 (2003a) 267–280.

    Google Scholar 

  • Cifrain, M. and Kordesch, K.V. “Advances, aging mechanism and lifetime in AFCs with circulating electrolyes”, J. Power Sources, 127 (2003b) 234–242.

    Article  CAS  Google Scholar 

  • Demarconnay, L., Coutanceau, C. and Léger, J.-M. “Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol”, Electrochim. Acta, 49 (2005) 4513–4521.

    Article  CAS  Google Scholar 

  • Gojković, S.Lj., Gupta, S. and Savinell, R.F. “Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction. Part II. Kinetics of oxygen reduction”, J. Electroanal. Chem., 462 (1999) 63–72.

    Article  Google Scholar 

  • Golikand, A.N., Shahrokhian, S., Asgari, M., Maragheh, M.G., Irannejad, L. and Khanchi, A. “Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium”, J. Power Sources, 144 (2005) 21–27.

    Article  CAS  Google Scholar 

  • Gouérec, P., Poletto, L., Denizot, J., Sanchez-Cortenzon, E. and Miners, J.H. “The evolution of the performance of alkaline fuel cells with circulating electrolyte”, J. Power Sources, 129 (2004) 193–204.

    Article  CAS  Google Scholar 

  • Gupta, S.S., Mahapatra, S.S. and Datta, J. “A potential anode material for the direct alcohol fuel cell”, J. Power Sources, 131 (2004) 169–174.

    Article  CAS  Google Scholar 

  • Gülzow, E. and Schulze, M. “Long-term operation of AFC electrodes with CO2 containing gases”, J. Power Sources, 127, (2004)243–251.

    Article  CAS  Google Scholar 

  • Gyenge, E. “Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells”, Electrochim. Acta, 49 (2004) 965–978.

    Article  CAS  Google Scholar 

  • Heller-Ling, N., Prestst, M., Gautier, J.-L., Koenig, J.-F., Poillerat, G. and Chartier, P. “Oxygen electroreduction mechanism at thin NixCo3-xO4 spinel film in a double channel electrode flow cell (DCEFC)”, Electrochim. Acta, 42 (1997) 197–202.

    Article  CAS  Google Scholar 

  • Klápště, B., Vondrák, J. and Velická, J. “MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides”, Electrochem. Acta, 47 (2002) 2365–2369.

    Article  Google Scholar 

  • Khalil, M.W., Rahim, M.A.A., Zimmer, A., Hassan, H.B. and Hameed, R.M.A. “Nickel impregnated silicalite-1 as an electro-catalyst for methanol oxidation”, J. Power Sources, 144 (2005) 35–41.

    Article  CAS  Google Scholar 

  • Kordesch, K., Gsellmann, J., Cifrain, M., Voss, S., Hacker, V., Aronson, R., Fabjan, C., Hejze, T. and Daniel-Ivad, J. “Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles”, J. Power Sources, 80 (1999) 190–197.

    Article  CAS  Google Scholar 

  • Kordesch, K., Cifrain, M., Koscher, G., Hejze, T. and Hacker, V. “A survey of fuel cell systems with circulating electrolytes”, Power Sources Conference 2004, Philadelphia, June 14–17.

    Google Scholar 

  • Koscher, G.A. and Kordesch, K. “Alkaline methanol/air power devices”, in: “Handbook of fuel cells-fundamentals, technology and applications”, Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds.), John Wiley, Vol. 4 (2003) 1125–1129.

    Google Scholar 

  • Lamy, C., Belgsir, E.M. and Léger, J-M. “Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC)”, J. Appl. Electrochem., 31 (2001) 799–809.

    Article  CAS  Google Scholar 

  • Lee, S., Kim, J., Lee, H., Lee, P. and Lee, J. “The characterization of an alkaline fuel cell that uses hydrogen storage alloys”, J. Electrochem. Soc., 149 (2002) A603–A606.

    Article  CAS  Google Scholar 

  • Li, Z.P., Liu, B.H., Arai, K. and Suda, S. “A fuel cell development for using borohydrides as the fuel”, J. Electrochem. Soc., 150 (2003a) A868–A872.

    Article  CAS  Google Scholar 

  • Li, Z.P., Liu, B.H., Arai, K., Asaba, K. and Suda, S. “Evaluation of alkaline borohydride solutions as the fuel for fuel cell”, J. Power Sources, 126 (2003b) 28–33.

    Article  CAS  Google Scholar 

  • Liu, B.H., Li, Z.P. and Suda, S. “Anodic oxidation of alkali borohydrides catalyzed by nickel”, J. Electrochem. Soc., 150 (2003) A398–A402.

    Article  CAS  Google Scholar 

  • Manoharan, R. and Prabhuram, J. “Possibilities of prevention of formation of poisoning species on direct methanol fuel cell anodes”, J. Power Sources, 96 (2001) 220–235.

    Article  CAS  Google Scholar 

  • Mao, L., Sotomuro, T., Nakatsu, K., Koshiba, N., Zhang, D. and Ohsaka, T. “Electrochemical characterization of catalytic activities of manganese oxide to oxygen reduction in alkaline aqueous solution”, J. Electrochem. Soc., 149 (2002) A504–A507.

    Article  CAS  Google Scholar 

  • McLean, G.F., Niet, T., Prince-Richard, S. and Djilali, N. “An assessment of alkaline fuel cell technology”, Int. J. Hydrogen Energy, 27 (2002) 507–526.

    Article  CAS  Google Scholar 

  • Morallón, E., Rodes, A., Vázquez, J.L. and Pérez, J.M. “Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hlk) in alkaline media”, J. Electroanal. Chem., 391 (1995) 149–157.

    Article  Google Scholar 

  • Morris, J.H., Gysling, H.J. and Reed, D. “Electrochemistry of boron compounds”, Chem. Rev., 85 (1985) 51–76.

    Article  CAS  Google Scholar 

  • Ortiz, J., Puelma, M. and Gautier, J.L. “Indirect oxidation of phenol on graphite on Ni0.3Co2.7O4 spinel electrodes in alkaline medium”, J. Chil. Chem. Soc., 48 (2003) 67–71.

    Article  CAS  Google Scholar 

  • Parsons, R. and VanderNott, T. “The oxidation of small organic molecules”, J. Electroanal. Chem., 257 (1988) 9–45.

    Article  CAS  Google Scholar 

  • Prabhuram, J. and Manoharan, R. “Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid”, J. Power Sources, 74 (1998) 54–61.

    Article  CAS  Google Scholar 

  • Ponce, J., Rehspringer, J.-L., Poillerat, G. and Gautier, J.L. “Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytic properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media”, Electrochim. Acta, 46 (2001) 3373–3380.

    Article  CAS  Google Scholar 

  • Rashkova, V., Kitova, S., Konstantinov, I. and Vitanov, T. “Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction”, Electrochim. Acta, 47 (2002) 1555–1560.

    Article  CAS  Google Scholar 

  • Rahim, M.A.A., Hameed, R.M.A. and Khalil, M.W. “Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium” J. Power Sources, 134 (2004) 160–169.

    Article  CAS  Google Scholar 

  • Schulze, M. and Gülzow, E. “Degradation of nickel anodes in alkaline fuel cells”, J. Power sources, 127 (2004) 252–263.

    Article  CAS  Google Scholar 

  • Shobba, T., Mayanna, S.M. and Sequeira, C.A.C. “Preparation and characterization of Co-W alloys as anode materials for methanol fuel cells”, J. Power Sources, 108 (2002) 261–264.

    Article  CAS  Google Scholar 

  • Tarasevich, M.R., Karichev, Z.R., Bogdanovskaya, V.A., Lubnin, E.N. and Kapustin, A.V. “Kinetics of ethanol electrooxidation at RuNi catalyst”, Electrochemistry Communications, 7 (2005) 141–146.

    Article  CAS  Google Scholar 

  • Tripković, A.V., Popović, K.Dj., Momčilović, J.D. and Dražić, D.M. “Kinetic and mechanistic study of methanol oxidation on a Pt(111) surface in alkaline media”, J. Electroanal Chem., 418 (1996) 9–20.

    Article  Google Scholar 

  • Tripković, A.V., Popović, K.Dj., Momčilović, J.D. and Dražić, D.M. “Kinetic and mechanistic study of methanol oxidation on a Pt(110) surface in alkaline media”, Electrochimica Acta, 44 (1998a) 1135–1145.

    Article  Google Scholar 

  • Tripković, A.V., Popović, K.Dj., Momčilović, J.D. and Dražić, D.M. “Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media”, J. Electroanal. Chem., 448 (1998b) 173–181.

    Article  Google Scholar 

  • Tripković, A.V., Popović, K.Dj. and Lović, J.D. “The influence of oxygen-containing species on the electrooxidation of the C1-C4 alcohols at some platinum single crystal surfaces in alkaline solution”, Electrochim. Acta, 46 (2001) 3163–3173.

    Article  Google Scholar 

  • Torresi, R.M. and Wasmus, S. “Product analysis”, in: “Handbook of fuel cells — fundamentals, technology and applications”, Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds.), John Wiley, Vol. 2 (2003) p-163–190.

    Google Scholar 

  • Verma, L.K. “Studies on methanol fuel cell”, J. Power Sources, 86 (2000) 464–468.

    Article  CAS  Google Scholar 

  • Verma, A., Jha, A.K. and Basu, S. “Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte”, J. Power Sources, 141 (2005a) 30–34.

    Article  CAS  Google Scholar 

  • Verma, A. and Basu, S. “Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell”, J. Power Sources, 145 (2005b) 282–285.

    Article  CAS  Google Scholar 

  • Verma, A., Jha, A.K. and Basu, S. “Evaluation of an alkaline fuel cell for multi-fuel system”, J. Fuel Cell Science and Technology, 2 (2005c) 234–237.

    Article  CAS  Google Scholar 

  • Verma, A. and Basu, S. “Power from hydrogen via fuel cell technology,” Chemical Weekly July 12 (2005d) 177–181.

    Google Scholar 

  • Verma, A., Sharma, S. and Basu, S. “Electrooxidation study of methanol and ethanol in alkaline medium” (2005e), manuscript submitted.

    Google Scholar 

  • Wagner, N., Schulze, M. and Gülzow, E. “Long term investigations of silver cathodes for alkaline fuel cells”, J. Power Sources, 127 (2004) 264–272.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, L., Hu, L., Zhuang, L., Lu, J. and Xu, B. “A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages”, Electrochem. Commun., 5 (2003) 662–666.

    Article  CAS  Google Scholar 

  • Yang, J. and Xu, J.J. “Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions”, Electrochem. Commun., 5 (2003) 306–311.

    Article  CAS  Google Scholar 

  • Yu, E.H. and Scott, K. “Development of direct methanol alkaline fuel cells using anion exchange membranes”, J. Power Sources, 137 (2004) 248–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Anamaya Publishers, New Delhi, India

About this chapter

Cite this chapter

Verma, A., Basu, S. (2007). Direct Alcohol and Borohydride Alkaline Fuel Cells. In: Basu, S. (eds) Recent Trends in Fuel Cell Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68815-2_7

Download citation

Publish with us

Policies and ethics