Direct Alcohol and Borohydride Alkaline Fuel Cells

  • Anil Verma
  • Suddhasatwa Basu


The alkaline fuel cell (AFC) was the first fuel cell technology used in many practical services like Apollo space mission and running an automobile (Kordesch et al. 1999, Carrette et al. 2001). It is a low temperature fuel cell technology, which uses hydrogen as a fuel, oxygen or air as oxidant and alkaline solution as electrolyte. The development of AFC technology has reached its peak in the beginning of 1980s (Schulze et al. 2004) but its further development is stopped due to many technical, commercial and safety issues. The research and development on fuel cell is gaining momentum as a new way power generation technology, which is environmental friendly. The main focus of technology development of fuel cells is to increase the power output per unit area of electrode at low cost. The interest in AFC increased again due to more favorable oxygen reduction (Burchardt et al. 2002, Yu et al. 2004) and fuel oxidation reactions (Wang et al. 2003, Rahim et al. 2004) in alkaline condition. Apart from these, the cost, simplicity, efficiency and the possibility to use the non-noble metal catalyst (Schulze et al. 2004, Cifrain et al. 2003a) compared to other low temperature fuel cell technology have given an impetus to the AFC research. A detailed comparison of AFC with polymer electrolyte membrane fuel cell (PEMFC) is given by McLean et al. (2002).


Fuel Cell Oxygen Reduction Reaction Sodium Borohydride Methanol Oxidation Oxygen Evolution Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, V. and Green, R. “Carbon dioxide removal from air for alkaline fuel cells operating with liquid hydrogen-Heat exchanger development”, Int. J. Hydrogen Energy, 21 (1996) 415–421.CrossRefGoogle Scholar
  2. Ahuja, V. and Green, R. “Carbon dioxide removal from air for alkaline fuel cells operating with liquid hydrogen-A synergistic advantage”, Int. J. Hydrogen Energy, 23 (1998) 131–137.CrossRefGoogle Scholar
  3. Al-Saleh, M.A., Gultekin, S., Al-Zakri, A.S. and Celiker, H. “Effect of Carbon Dioxide on the Performance of Ni/PTFE and Ag/PTFE Electrodes in an Alkaline Fuel Cell” J. Appl. Electrochem., 24 (1994) 575–80.CrossRefGoogle Scholar
  4. Amendola, S.C., Onnerud, P., Kelly, M.T., Petillo, P.J., Sharp-Goldman, S.L. and Binder, M. “A novel high power density borohydride-air cell”, J. Power Sources, 84 (1999) 130–133.CrossRefGoogle Scholar
  5. Appleby, A.J. and Foulkes, F.R. “Fuel cell handbook”, Van Nostrand Reinhold (1989), 261–312.Google Scholar
  6. Bard, A.J. and Faulkner, L.R. “Electrochemical methods: Fundamentals and Applications” John Wiley & Sons, 2nd ed. (2001) 226–260.Google Scholar
  7. Burchardt, T., Gouérec, P., Sanchez-Cortezon, E., Karichev, Z. and Miners, J. H. “Alkaline fuel cells: contemporary advancement and limitations”, Fuel, 81 (2002) 2151–2155.CrossRefGoogle Scholar
  8. Bezdička, P., Grygar, T., Klápště, B. and Vondrák, J., “MnOx/C composites as electrode materials. I. Synthesis, XRD and cyclic voltammetric investigation”, Electrochim. Acta, 45 (1999) 913–920.CrossRefGoogle Scholar
  9. Carrette, L., Friedrich, K.A. and Stimming, U. “Fuel cells-fundamentals and applications”, Fuel Cells, 1 (2001) 5–39.CrossRefGoogle Scholar
  10. Choudhury, N.A., Raman, R.K., Sampath, S. and Shukla, A.K. “An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, J. Power Sources, 143 (2005) 1–8.CrossRefGoogle Scholar
  11. Cifrain, M. and Kordesch, K. “Hydrogen/oxygen (air) fuel cells with alkaline electrolytes”, in: “Handbook of fuel cells-fundamentals, technology and applications”, Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds.), John Wiley, Vol. 1 (2003a) 267–280.Google Scholar
  12. Cifrain, M. and Kordesch, K.V. “Advances, aging mechanism and lifetime in AFCs with circulating electrolyes”, J. Power Sources, 127 (2003b) 234–242.CrossRefGoogle Scholar
  13. Demarconnay, L., Coutanceau, C. and Léger, J.-M. “Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol”, Electrochim. Acta, 49 (2005) 4513–4521.CrossRefGoogle Scholar
  14. Gojković, S.Lj., Gupta, S. and Savinell, R.F. “Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction. Part II. Kinetics of oxygen reduction”, J. Electroanal. Chem., 462 (1999) 63–72.CrossRefGoogle Scholar
  15. Golikand, A.N., Shahrokhian, S., Asgari, M., Maragheh, M.G., Irannejad, L. and Khanchi, A. “Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium”, J. Power Sources, 144 (2005) 21–27.CrossRefGoogle Scholar
  16. Gouérec, P., Poletto, L., Denizot, J., Sanchez-Cortenzon, E. and Miners, J.H. “The evolution of the performance of alkaline fuel cells with circulating electrolyte”, J. Power Sources, 129 (2004) 193–204.CrossRefGoogle Scholar
  17. Gupta, S.S., Mahapatra, S.S. and Datta, J. “A potential anode material for the direct alcohol fuel cell”, J. Power Sources, 131 (2004) 169–174.CrossRefGoogle Scholar
  18. Gülzow, E. and Schulze, M. “Long-term operation of AFC electrodes with CO2 containing gases”, J. Power Sources, 127, (2004)243–251.CrossRefGoogle Scholar
  19. Gyenge, E. “Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells”, Electrochim. Acta, 49 (2004) 965–978.CrossRefGoogle Scholar
  20. Heller-Ling, N., Prestst, M., Gautier, J.-L., Koenig, J.-F., Poillerat, G. and Chartier, P. “Oxygen electroreduction mechanism at thin NixCo3-xO4 spinel film in a double channel electrode flow cell (DCEFC)”, Electrochim. Acta, 42 (1997) 197–202.CrossRefGoogle Scholar
  21. Klápště, B., Vondrák, J. and Velická, J. “MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides”, Electrochem. Acta, 47 (2002) 2365–2369.CrossRefGoogle Scholar
  22. Khalil, M.W., Rahim, M.A.A., Zimmer, A., Hassan, H.B. and Hameed, R.M.A. “Nickel impregnated silicalite-1 as an electro-catalyst for methanol oxidation”, J. Power Sources, 144 (2005) 35–41.CrossRefGoogle Scholar
  23. Kordesch, K., Gsellmann, J., Cifrain, M., Voss, S., Hacker, V., Aronson, R., Fabjan, C., Hejze, T. and Daniel-Ivad, J. “Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles”, J. Power Sources, 80 (1999) 190–197.CrossRefGoogle Scholar
  24. Kordesch, K., Cifrain, M., Koscher, G., Hejze, T. and Hacker, V. “A survey of fuel cell systems with circulating electrolytes”, Power Sources Conference 2004, Philadelphia, June 14–17.Google Scholar
  25. Koscher, G.A. and Kordesch, K. “Alkaline methanol/air power devices”, in: “Handbook of fuel cells-fundamentals, technology and applications”, Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds.), John Wiley, Vol. 4 (2003) 1125–1129.Google Scholar
  26. Lamy, C., Belgsir, E.M. and Léger, J-M. “Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC)”, J. Appl. Electrochem., 31 (2001) 799–809.CrossRefGoogle Scholar
  27. Lee, S., Kim, J., Lee, H., Lee, P. and Lee, J. “The characterization of an alkaline fuel cell that uses hydrogen storage alloys”, J. Electrochem. Soc., 149 (2002) A603–A606.CrossRefGoogle Scholar
  28. Li, Z.P., Liu, B.H., Arai, K. and Suda, S. “A fuel cell development for using borohydrides as the fuel”, J. Electrochem. Soc., 150 (2003a) A868–A872.CrossRefGoogle Scholar
  29. Li, Z.P., Liu, B.H., Arai, K., Asaba, K. and Suda, S. “Evaluation of alkaline borohydride solutions as the fuel for fuel cell”, J. Power Sources, 126 (2003b) 28–33.CrossRefGoogle Scholar
  30. Liu, B.H., Li, Z.P. and Suda, S. “Anodic oxidation of alkali borohydrides catalyzed by nickel”, J. Electrochem. Soc., 150 (2003) A398–A402.CrossRefGoogle Scholar
  31. Manoharan, R. and Prabhuram, J. “Possibilities of prevention of formation of poisoning species on direct methanol fuel cell anodes”, J. Power Sources, 96 (2001) 220–235.CrossRefGoogle Scholar
  32. Mao, L., Sotomuro, T., Nakatsu, K., Koshiba, N., Zhang, D. and Ohsaka, T. “Electrochemical characterization of catalytic activities of manganese oxide to oxygen reduction in alkaline aqueous solution”, J. Electrochem. Soc., 149 (2002) A504–A507.CrossRefGoogle Scholar
  33. McLean, G.F., Niet, T., Prince-Richard, S. and Djilali, N. “An assessment of alkaline fuel cell technology”, Int. J. Hydrogen Energy, 27 (2002) 507–526.CrossRefGoogle Scholar
  34. Morallón, E., Rodes, A., Vázquez, J.L. and Pérez, J.M. “Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hlk) in alkaline media”, J. Electroanal. Chem., 391 (1995) 149–157.CrossRefGoogle Scholar
  35. Morris, J.H., Gysling, H.J. and Reed, D. “Electrochemistry of boron compounds”, Chem. Rev., 85 (1985) 51–76.CrossRefGoogle Scholar
  36. Ortiz, J., Puelma, M. and Gautier, J.L. “Indirect oxidation of phenol on graphite on Ni0.3Co2.7O4 spinel electrodes in alkaline medium”, J. Chil. Chem. Soc., 48 (2003) 67–71.CrossRefGoogle Scholar
  37. Parsons, R. and VanderNott, T. “The oxidation of small organic molecules”, J. Electroanal. Chem., 257 (1988) 9–45.CrossRefGoogle Scholar
  38. Prabhuram, J. and Manoharan, R. “Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid”, J. Power Sources, 74 (1998) 54–61.CrossRefGoogle Scholar
  39. Ponce, J., Rehspringer, J.-L., Poillerat, G. and Gautier, J.L. “Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytic properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media”, Electrochim. Acta, 46 (2001) 3373–3380.CrossRefGoogle Scholar
  40. Rashkova, V., Kitova, S., Konstantinov, I. and Vitanov, T. “Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction”, Electrochim. Acta, 47 (2002) 1555–1560.CrossRefGoogle Scholar
  41. Rahim, M.A.A., Hameed, R.M.A. and Khalil, M.W. “Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium” J. Power Sources, 134 (2004) 160–169.CrossRefGoogle Scholar
  42. Schulze, M. and Gülzow, E. “Degradation of nickel anodes in alkaline fuel cells”, J. Power sources, 127 (2004) 252–263.CrossRefGoogle Scholar
  43. Shobba, T., Mayanna, S.M. and Sequeira, C.A.C. “Preparation and characterization of Co-W alloys as anode materials for methanol fuel cells”, J. Power Sources, 108 (2002) 261–264.CrossRefGoogle Scholar
  44. Tarasevich, M.R., Karichev, Z.R., Bogdanovskaya, V.A., Lubnin, E.N. and Kapustin, A.V. “Kinetics of ethanol electrooxidation at RuNi catalyst”, Electrochemistry Communications, 7 (2005) 141–146.CrossRefGoogle Scholar
  45. Tripković, A.V., Popović, K.Dj., Momčilović, J.D. and Dražić, D.M. “Kinetic and mechanistic study of methanol oxidation on a Pt(111) surface in alkaline media”, J. Electroanal Chem., 418 (1996) 9–20.CrossRefGoogle Scholar
  46. Tripković, A.V., Popović, K.Dj., Momčilović, J.D. and Dražić, D.M. “Kinetic and mechanistic study of methanol oxidation on a Pt(110) surface in alkaline media”, Electrochimica Acta, 44 (1998a) 1135–1145.CrossRefGoogle Scholar
  47. Tripković, A.V., Popović, K.Dj., Momčilović, J.D. and Dražić, D.M. “Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media”, J. Electroanal. Chem., 448 (1998b) 173–181.CrossRefGoogle Scholar
  48. Tripković, A.V., Popović, K.Dj. and Lović, J.D. “The influence of oxygen-containing species on the electrooxidation of the C1-C4 alcohols at some platinum single crystal surfaces in alkaline solution”, Electrochim. Acta, 46 (2001) 3163–3173.CrossRefGoogle Scholar
  49. Torresi, R.M. and Wasmus, S. “Product analysis”, in: “Handbook of fuel cells — fundamentals, technology and applications”, Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds.), John Wiley, Vol. 2 (2003) p-163–190.Google Scholar
  50. Verma, L.K. “Studies on methanol fuel cell”, J. Power Sources, 86 (2000) 464–468.CrossRefGoogle Scholar
  51. Verma, A., Jha, A.K. and Basu, S. “Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte”, J. Power Sources, 141 (2005a) 30–34.CrossRefGoogle Scholar
  52. Verma, A. and Basu, S. “Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell”, J. Power Sources, 145 (2005b) 282–285.CrossRefGoogle Scholar
  53. Verma, A., Jha, A.K. and Basu, S. “Evaluation of an alkaline fuel cell for multi-fuel system”, J. Fuel Cell Science and Technology, 2 (2005c) 234–237.CrossRefGoogle Scholar
  54. Verma, A. and Basu, S. “Power from hydrogen via fuel cell technology,” Chemical Weekly July 12 (2005d) 177–181.Google Scholar
  55. Verma, A., Sharma, S. and Basu, S. “Electrooxidation study of methanol and ethanol in alkaline medium” (2005e), manuscript submitted.Google Scholar
  56. Wagner, N., Schulze, M. and Gülzow, E. “Long term investigations of silver cathodes for alkaline fuel cells”, J. Power Sources, 127 (2004) 264–272.CrossRefGoogle Scholar
  57. Wang, Y., Li, L., Hu, L., Zhuang, L., Lu, J. and Xu, B. “A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages”, Electrochem. Commun., 5 (2003) 662–666.CrossRefGoogle Scholar
  58. Yang, J. and Xu, J.J. “Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions”, Electrochem. Commun., 5 (2003) 306–311.CrossRefGoogle Scholar
  59. Yu, E.H. and Scott, K. “Development of direct methanol alkaline fuel cells using anion exchange membranes”, J. Power Sources, 137 (2004) 248–256.CrossRefGoogle Scholar

Copyright information

© Anamaya Publishers, New Delhi, India 2007

Authors and Affiliations

  • Anil Verma
    • 1
  • Suddhasatwa Basu
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyDelhi, New DelhiIndia

Personalised recommendations