Skip to main content

Polymer Electrolyte Membrane Fuel Cell

  • Chapter

Abstract

The polymer electrolyte membrane fuel cell (PEMFC) also known as proton exchange membrane fuel cell, polymer electrolyte fuel cell (PEFC) and solid polymer fuel cell (SPFC) was first developed by General Electric in the USA in the 1960’s for use by NASA in their initial space applications. The electrolyte is an ion conducting polymer membrane, described in more details in Section 2.2. Anode and cathode are bonded to either side of the membrane. This assembly is normally called membrane electrode assembly (MEA) or EMA which is placed between the two flow field plates (bipolar plates) (Section 2.5) to form what is known as “stack”. The basic operation of the PEMFC is the same as that of an acid electrolyte cell as the mobile ions in the polymer are H+ or proton.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceves S M, Perfect S and Weisberg A (2004), Optimum utilization of available space in a vehicle through conformable hydrogen vessels, DOE Hydrogen Program-Progress report.

    Google Scholar 

  • Adamson K A ( 2005), Fuel Cell Today Market Survey: Light Duty Vehicles. Fuel Cell Today, pp. 1–19 (March).

    Google Scholar 

  • Adjemian K T, Lee S J, Srinivasan S, Benziger J, Bocarsly A B (2002) Silicon oxide Nafion composite membranes for proton exchange membrane fuel cell operation at 80–140°C. J Electrochem Soc., 149, pp. A256–A261.

    CAS  Google Scholar 

  • Ahn S Y and Le Y C (2005) Effect of the ionomers in the electrode on the performance of PEMFC under non-humidifying conditions, Electrochim Acta, 50, pp. 669–672.

    Google Scholar 

  • Allcock H R, Hofmann M A, Ambler C M (2002) Phenylphosphonic acid functionalized polywaryloxyphosphazene as proton-conducting membranes for direct methanol fuel cells. J Membr Sci., 201, pp. 47–54.

    CAS  Google Scholar 

  • Antolini E (2004) Recent developments in polymer electrolyte fuel cell electrodes, J. Appl. Electrochemistry, 54, pp. 563–576.

    Google Scholar 

  • Antonucci P L, Arico A S, Creti P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion®-Silica electrolyte for high temperature operation, Solid State Ionics, 125, pp. 431–437.

    CAS  Google Scholar 

  • Argumosa M P and Pendones R B (2005), A Power System for Remote Applications Based on PEM Fuel Cell, 3rd European PEFC Forum, Lucerne, Poster 405.

    Google Scholar 

  • Asensio J A, Borros S, Gomez Romero (2002) Proton conducting polymers based on benzimidazole and sulfonated benzimidazoles. J Polym Sci. Part A: PolymChem., 40, pp. 3703–10.

    CAS  Google Scholar 

  • Asensio J A, Borros S and Go’mez-Romeroa P et al. (2004) Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly-2,5-benzimidazole Membranes, J. Electrochem. Soc., 151, pp. A304–A310

    CAS  Google Scholar 

  • Bae J M, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N (2002) Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, 147, pp. 189–94.

    CAS  Google Scholar 

  • Bahar B, Hobson A R and Kolde J A (1997), Integral composite membrane, US Patent No. 5,599,614.

    Google Scholar 

  • Baturina O A and Wnek G E (2005) Characterization of Proton Exchange Membrane Fuel cells with Catalyst Layers obtained by Electro spraying, Electrochemical and Solid-State Letters, 8, pp. A267–A269.

    CAS  Google Scholar 

  • Bender G, Zawodzinski T A and Saab A P (2005) Fabrication of high precision PEFC membrane electrode assemblies, J. Power Sources, 124, pp. 114–117.

    Google Scholar 

  • Benítez R, Soler J and Daza L (2005) Novel method for preparation of PEMFC electrodes by the electro-spray technique, J. Power Sources (In Press).

    Google Scholar 

  • Bernardi D M and Verbrugge M W (1992) “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J Electrochem Soc., 139, pp. 2477–2490.

    CAS  Google Scholar 

  • Berg P, Promislow K, St. Pierre J, Stumper J and Wetton B (2004), Water Management in PEM Fuel Cells, J Electrochem Soc., 151, pp. A341–A353.

    CAS  Google Scholar 

  • Besse S, Capron P and Diat O (2002) Sulfonated polyimides for fuel cell electrode membrane assemblies (EMA). J New Mater Electrochem System, 5, pp. 109–112.

    CAS  Google Scholar 

  • Bevers B, Wagner N and Bradke M (1998) Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures, Int. J. Hydrogen Energy, 23, pp. 57–63.

    CAS  Google Scholar 

  • Bockris J O’M and Appleby A J (1986) Assessment of research needs for advanced fuel cells, in: S. Penner (Ed.), Energy 11 p. 110 (Chapter 3).

    Google Scholar 

  • Bonnet B, Jones D J and Roziere J (2000) Hybrid organic-inorganic membranes for a medium temperature fuel cell. J New Mater Electrochem. System, 3, pp. 87–92.

    CAS  Google Scholar 

  • Bouwman P J, Dmowski W, Stanley J, Cotton G B and Swider-Lyonsa K E (2004) Platinum-Iron Phosphate Electrocatalysts for Oxygen Reduction in PEMFCs, J. Electrochem. Soc., 151, pp. A1989–A1998.

    CAS  Google Scholar 

  • Bozkurt A and Meyer W H (2001) Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ionics, 138, pp. 259–265.

    CAS  Google Scholar 

  • Bozkurt A and Meyer W H (2001) Proton-conducting poly(vinylpyrrolidon)-phosphoric acid blends, J Polym Sci. Polym Phys., 39, pp. 87–94.

    Google Scholar 

  • Britz P and Esser P (2005) Uninterutible Fuel Cell Power for Telecommunication Transmitters, Fuel Cells for a Sustainable World, Lucerne, Session A12.

    Google Scholar 

  • Brosha E, Choi Jong-Ho, Davey J, Garzon F, Hamon C, Piela B, Ramsey J, Uribe F and Zelenay P (2005) Non-Precious Metal Catalysts, Hydrogen, Fuel Cells & Infrastructure Technologies Program, 2005 Annual Review, Washington, DC, May 23–27, 2005.

    Google Scholar 

  • Büchi F and S Srinivasan (1997) “Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases”, J. Electrochem. Soc., 144, pp. 2767–2772.

    Google Scholar 

  • Büchi F N, Reum M, Freunberger S A and Delfino A (2005) On the Efficiency of Automotive H2/O2 PE Fuel Cell Systems, 3rd European PEFC Forum, Lucerne File No. B091.

    Google Scholar 

  • Carter R, Wycisk R, Yoo H, Pintauro P N (2002) Blended polyphosphazeney polyacrylonitrile membranes for direct methanol fuel cells. Electrochem Solid State Letters, 5, pp. A195–A197.

    CAS  Google Scholar 

  • Cavaliere S, Raynal F, Etcheberry A, Herlem M and Perezb H (2004) Direct Electrocatalytic Activity of Capped Platinum Nanoparticles Toward Oxygen Reduction in Electrochemical and Solid-State, Letters, 7 pp. A358–A360.

    CAS  Google Scholar 

  • Cavalca C A, Arps J H and Murthy M (2001) Fuel cell membrane electrode assemblies with improved power outputs and poison resistance, US Pat. No. 6,300,000.

    Google Scholar 

  • Cha S Y and Lee W M (1999) Performance of proton exchange membrane fuel cell electrodes prepared by direct decomposition of ultra thin platinum on the membrane surface, J. Electrochem. Soc. 146, pp. 4055–4060.

    CAS  Google Scholar 

  • Chen F C, Gao Z, Loutfy R O and Hecht M (2003) Analysis of optimal heat transfer in a PEM fuel cell cooling plate, FUEL CELLS, 3, pp. 181–188.

    Google Scholar 

  • Chen S and Kucernak A (2004) Electrocatalysis under conditions of High Mass Transport: Investigation of Hydrogen Oxidation on Single Submicron Pt Particles Supported on Carbon, J. Phys. Chem. B, 108, pp. 13984–13994.

    CAS  Google Scholar 

  • Cheng X, Yi B, Han M, Zhang J, Qiao Y and Yu J (1999) Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources, 79, pp. 75–81.

    CAS  Google Scholar 

  • Cheng X, Chen L, Peng C, Chen Z, Zhang Y and Fanc Q (2004) Catalyst Microstructure Examination of PEMFC Membrane Electrode Assemblies vs. Time, J. Electrochem. Soc., 151, pp. A48–A52.

    CAS  Google Scholar 

  • Cho E A, Jeon U-S, Hong S-A, Oh I-H and Kang S-G (2005) Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates, J. Power Sources, 142, pp. 177–183.

    CAS  Google Scholar 

  • Choi P, Jalani N H and Datta R (2005) Thermodynamics and Proton Transport, Nafion, III. Proton Transport in Nafion/Sulfated ZrO2 Nanocomposite Membranes, J. Electrochem. Soc., 152, pp. A1548–A1554.

    CAS  Google Scholar 

  • Chow C Y and Wogniczka B M (1995) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section, U.S. Patent No. 5,382,478.

    Google Scholar 

  • Chun Y G, Kim C S, Peck D H and Shin D R (1998) Screen printing of electrodes, J. Power Sources, 71, pp. 174–180.

    CAS  Google Scholar 

  • Cleghorn S, Kolde J and Liu W (2003) Catalyst coated composite membranes Volume 3, Part 3, pp. 566–575. Handbook of Fuel Cells—Fundamentals, Technology and Applications, edited by Wolf Vielstich, Arnold Lamm, Hubert A. Gasteiger, John Wiley & Sons Ltd, Chichester, 2003.

    Google Scholar 

  • Cooper J S (2004), Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact, J. Power Sources, 129, pp. 152–169.

    CAS  Google Scholar 

  • Corbo P, Corcione F E, Migliardini F and Veneri O (2005) Experimental study of a fuel cell power train for road transport application, J. Power Sources, 145, pp. 610–619.

    CAS  Google Scholar 

  • Corti C W, Holliday R J and Thompson D T (2005) Commercial aspects of gold catalysis, Applied Catalysis A: General 291, pp. 253–261.

    CAS  Google Scholar 

  • Costamagna P and Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects, J. Power Sources, 102, pp. 242–252.

    CAS  Google Scholar 

  • Costamagna P, Yang C, Bocarsly A B, Srinivasan S (2002) Nafion 115 Zirconium phosphate composite membranes for operation of PEMFCs above 100 C. Electrochim Acta, 47, pp. 1023–1033.

    CAS  Google Scholar 

  • Cropper D (2004) Fuel Cell Today Market Survey: Light Duty Vehicles, Fuel Cell Today, pp. 1–13 (April).

    Google Scholar 

  • Cunningham J M (2001) Air System Management for Fuel Cell Vehicle Applications, M S Thesis, University of California, Davis, USA.

    Google Scholar 

  • Curtin D E, Lousenberg R D, Henry T J, Tangeman P C and Tisack M E (2004) Advanced materials for improved PEMFC performance and life, J. Power Sources, 131, pp. 41–48.

    CAS  Google Scholar 

  • Daugherty M, Haberman D, Stetson N, Ibrahim S, Lokken D, Dunn D, Cherniak M, Salter C (1999) Modular PEM fuel cell for outdoor applications, Proceedings of the European Fuel cell Forum Portable Fuel Cells Conference, Lucerne, pp. 205–213.

    Google Scholar 

  • Davis M W, Development and Evaluation of a Test Apparatus for Fuel Cells (2000) Electronic Thesis, Mechanical Engineering Department, Virginia Tech.

    Google Scholar 

  • Davies D P and Adcock P L (2002) Light weight high power density fuel cell stack, DTI/Pub URN 02/643.

    Google Scholar 

  • De Castro E S (2005) Integrated Manufacturing for Advanced MEAs DOE Hydrogen and FC Program Review-2005, DE-FC04-02AL67606.

    Google Scholar 

  • Debe M K (2005) Advanced MEA’s for Enhanced Operating Conditions, Amenable to High Volume Manufacture, DOE Hydrogen and FC Program Review-2005, DE-FC04-02AL67606.

    Google Scholar 

  • Dhar H P (1994) Near ambient unhumidified solid polymer fuel cell US Patent No. 5,318,863.

    Google Scholar 

  • Dhar H P, Lee J H, Lewinski K A (1996) Proceedings of Fuel Cell Seminar, November 1996, Orlando, FL, USA, p. 583.

    Google Scholar 

  • Dhathathreyan K S, Ramya K and Vishnupriya B (2001) A Blend Membrane, Indian Patent Application No. 303/MAS/2001.

    Google Scholar 

  • Dhathathreyan K S, Sridhar P, Perumal R, Rajalakshmi N and Raja M (2001) Humidification Studies on Polymer Electrolyte Membrane Fuel Cell, J. Power Sources, 101, pp. 72–78.

    Google Scholar 

  • Ding J, Chuy C and Holdcroft S (2002) Solid polymer electrolytes based on ionic graft polymers: Effect of graft chain length on nano-structured, ionic networks, Adv Funct. Mater., 12. pp. 389–394.

    CAS  Google Scholar 

  • Divisek J, Oeijen H-F, Peinecke V, Schmidt V M and Stimming U (1998) Components for PEM fuel cell systems using hydrogen and CO containing fuels, Electrochim. Acta, 43, pp. 3811–3815.

    CAS  Google Scholar 

  • Dong Z (2001) PEM Fuel Cell Stack Development and System Optimization, Ph. D Thesis, University of Victoria.

    Google Scholar 

  • Doyle M, Choi S K, Proulx G (2000) High temperature proton conducting membrane based on perfluorinated ionomer membrane — Ionic fluid composites, J. Electrochem. Soc. 147 pp. 34–37.

    CAS  Google Scholar 

  • Dumercy L, Glises R and Kauffmann J M (2005) 3D Steady state thermal modeling of a three cells PEMFC stack, 3rd European PEFC Forum, Lucerne, File No. P208.

    Google Scholar 

  • Eikerling M, Kornyshev A A, Kuznetsov A M, Ulstrup J and Walbran S (2001) Mechanisms of proton conductance in polymer electrolyte membranes, J Phys Chem B, 105, pp. 3646–62.

    CAS  Google Scholar 

  • Eikerling M, Kornyshev A A (2001a) Proton transfer in a single pore of a polymer electrolyte membrane. J Electroanal Chem., 502, pp. 1–14.

    CAS  Google Scholar 

  • Eikerling M, Paddison S J, Zawodzinski T A (2002) Molecular orbital calculations of proton dissociation and hydration of various acidic moieties for fuel cell polymers, J New Mater Electrochem Sys., 5, pp. 15–23.

    CAS  Google Scholar 

  • Eisman G A, in: J W, Van Zee, R E White K, Kinoshita H S, Burney (Eds.) (1986) Proceedings of the Symposium on Diaphragms, Separators and Ion-Exchange Membranes, PV 86-13, Electrochem Soc. Proc. Ser., Pennington, NJ, p. 156.

    Google Scholar 

  • Ersoza A, Olguna Hand Ozdogan S (2005) Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming, Energy, pp. 1–11.

    Google Scholar 

  • Evans J P (2003) Experimental Evaluation of the Effect of Inlet Gas Humidification on Fuel Cell Performance, Electronic Thesis (MS), Mechanical Engineering Department, Virginia Tech.

    Google Scholar 

  • Evertz J and Guenthart M (2003) Structural Concepts for light weights and cost effective end plates for fuel cell stacks, European Fuel cell forum, Lucerne, pp. 1–8.

    Google Scholar 

  • Faubert G, Cote R, Doodle J P, Lefevre M and Bertrand P (1999) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylene tetracarboxylic dianhydride, Electrochim. Acta, 44, pp. 2589–2593.

    CAS  Google Scholar 

  • Fedkiw P and Her W (1989) An impregnation — reduction method to prepare electrodes on Nafion SPE, J. Electrochem. Soc., 136, pp. 899–900.

    CAS  Google Scholar 

  • Fernández J L and Bard A J (2003) Scanning Electrochemical Microscopy. 47. Imaging Electrocatalytic Activity for Oxygen Reduction in an Acidic Medium by the Tip Generation-Substrate Collection Mode, Anal. Chem., 75, pp. 2967–2974.

    Google Scholar 

  • Fernández R, Ferreira-Aparicio P and Daza L (2005) PEMFC electrode preparation: Influence of the solvent composition and evaporation rate on the catalytic layer microstructure, J. Power Sources (In Press).

    Google Scholar 

  • Fernández J L, Walsh D A and Bard A J (2005a) Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning electrochemical Microscopy. M-Co (M: Pd, Ag, Au), J Amer. Chem. Soc., 127, p. 9.

    Google Scholar 

  • Foster S, Mitchell P and Mortimer R (1994) Proceedings of the Fuel Cell—Program and Abstracts on the Development of a Novel Electrode Fabrication Technique for Use in Solid Polymer Fuel Cells, pp. 442–443.

    Google Scholar 

  • Franco A V “Fuel cells automotive industry” (2005) Procyan Report.

    Google Scholar 

  • Frey T H and Linardi M (2005) Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance, Electrochimica Acta, 50, pp. 99–105.

    Google Scholar 

  • Fuel Cells (2000) Breakthrough Technologies Institute, Status of Fuel Cell Technology for Distributed and Portable Power Generation, www.fuelcells.org.

    Google Scholar 

  • Fuel Cell Hand Book (2000) (Fifth ed.) EG&G Parsons Inc., Science applications International Corporation under Contract No. DE-AM26-99FT40575 Oct.

    Google Scholar 

  • Ganesh Mohan, Prabhakara Rao B, Das S K, Pandiyan S, Rajalakshmi N and Dhathathreyan K S (2004) Analysis of Flow Maldistribution of Fuel and Oxidant in a PEMFC, Journal of Energy Resources Technology, Transactions of ASME, 126, pp. 262–270.

    CAS  Google Scholar 

  • Gasteiger H A, Panels J E and Yan S G (2004) Dependence of PEM fuel cell performance on catalyst loading, J. Power Sources, 127, pp. 162–171.

    CAS  Google Scholar 

  • Gasteiger H A, Kocha S S, Sompalli B and Wagner F T (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56, pp. 9–35.

    CAS  Google Scholar 

  • Genies C, Mercier R, Sillion B, Cornet N, Gebel G and Pineri M (2001) Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes, Polymer, 42, pp. 359–73.

    CAS  Google Scholar 

  • Genies C, Mercier R, Sillion B (2001a) Stability study of sulfonated phthalic and naphthalenic polyimide structures, aqueous medium, Polymer, 42, pp. 5097–5105.

    CAS  Google Scholar 

  • Genova-Dimitrova P, Baradie B, Foscallo D, Poinsignon C and Sanchez J Y (2001) Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, J Membr Sci., 185, pp. 59–71.

    CAS  Google Scholar 

  • Glandt J, Shimpalee S, Lee w-K and van Zee J W (2002) Modeling the effect of flow field design on PEM fuel cell performance, 2002 Spring National Meeting, New Orleans, LA.

    Google Scholar 

  • Glises R, Hissel D, Harel F and Péra M C (2005) New design of a PEM fuel cell air automatic climate control unit, J. Power Sources (In Press).

    Google Scholar 

  • Goeke K et al. (1998) Baseline Energy Outlook, P300-98-012, California Energy Commission, Sacramento, August.

    Google Scholar 

  • González-Huerta R G, Chávez-Carvayar J A and González-Huerta O S (2005) Electro catalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell, J. Power Sources (In Press).

    Google Scholar 

  • Gottesfeld S and Wilson M (1992) High performance catalysed membranes of ultra low Pt loadings for polymer electrolyte fuel cells, J. Electrochem. Soc., 139, pp. L28–30.

    Google Scholar 

  • Gottesfeld S and Wilson M (1992a) J. Appl. Electrochem, 22, pp. 1–7.

    Google Scholar 

  • Gottesfeld S (1993) “Polymer Electrolyte Fuel Cells: Potential Transportation and Stationary Applications”, No. 10, An EPRI/GRI Fuel Cell Workshop on Technology Research and Development, Stonehart Associates, Madison, Connecticut.

    Google Scholar 

  • Gottesfeld S and Zawodzinski T A (1997) in: R.C. Alkire, H. Gerischer, D.M. Kolb, C.W. Tobias (Eds.), Advances in Electrochemical Science and Engineering., Vol. 5, Wiley-VCH, Weinheim, Germany, p. 195.

    Google Scholar 

  • Gottesfeld S, Zawodzinski T A (1998) PEFC Chapter, Advances in Electrochemical Science and Engineering, Volume 5, edited by R. Alkire, H. Gerischer, D. Kolb, C. Tobias, pp. 197–301.

    Google Scholar 

  • Grune H (1992) Fuel Cell Seminar Program and Abstracts, November 29–December 2, 1992, Tucson, Arizona, p. 161.

    Google Scholar 

  • Grubb W T (1957) Proceedings of the 11th Annual Battery Research and Development Conference, PSC Publications Committee, Red Bank, NJ, p. 5.

    Google Scholar 

  • Grubb W T (1959) Fuel Cell U.S. Patent No. 2,913,511.

    Google Scholar 

  • Gummert and Winkelmann T (2005) Fuel Cell Co-generator for Residential Applications, Fuel Cells for a Sustainable World, Lucerne, File No. A114.

    Google Scholar 

  • Guo X, Fang J, Watari T, Tanaka K, Kita H, Okamoto K (2002) Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis (4-aminophenyl)fluorene-2,7-disulfonic acid. Macromolecules, 35, pp. 6707–6713.

    CAS  Google Scholar 

  • Guo Q, Sethuraman V A and White R E (2004) Parameter Estimates for a PEMFC Cathode, J. Electrochem. Soc., 151, pp. A983–A993.

    CAS  Google Scholar 

  • Guzlow E, Schulze M, Wagner N, Kaz T, Reissner R, Steinhilber G and Schneider A (2000) Dry layer preparation and characterization of polymer electrolyte fuel cell components, J. Power Sources, 86, pp. 352–362.

    Google Scholar 

  • Guzlow E and Kaz T (2002) New results of PEFC electrodes produced by the DLR dry preparation technique, J. Power Sources, 106, pp. 122–125.

    Google Scholar 

  • Hagiwara R, Nohira T, Matsumoto K and Tamba Y (2005) A Fluorohydrogenate Ionic Liquid Fuel Cell Operating Without Humidification, Electrochemical and Solid-State Letters, 8, pp. A231–A233.

    CAS  Google Scholar 

  • Hailes R (1999) Fuel cells for transportation, An inventory analysis of environmental interventions associated with a prototype stack component manufacturing route, Thesis, Imperial College, London, UK.

    Google Scholar 

  • Hamada Y, Nakamura M, Kubota H, Ochifuji K, Murase M and Goto R (2004) Field performance of a polymer electrolyte fuel cell for a residential energy system, Renewable and Sustainable Energy Reviews, 9, pp. 345–362.

    Google Scholar 

  • Haraldsson K, Folkesson A and Alvfors P (2005) Fuel cell buses in the Stockholm CUTE project—First experiences from a climate perspective, J. Power Sources, 145, pp. 620–631.

    CAS  Google Scholar 

  • He W, Yi J S and Nhuyen T V (2000) Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields, AIChE J., 46, pp. 2053–2064.

    CAS  Google Scholar 

  • Henzel A, Nolte R, Ledjeff-Hey K and Zedde M (1998) Membrane fuel cells—concepts and design, Electrochim. Acta, 43, pp. 3817–3820.

    Google Scholar 

  • Heinzel A, Roes J and Brandt H (2005) Increasing the electric efficiency of a fuel cell system by re-circulating the anodic off gas, J. Power Sources, 145, pp. 312–318.

    CAS  Google Scholar 

  • Hofmann M A, Ambler C M, Maher A E (2002) Synthesis of polyphosphazenes with sulfonimide side groups. Macromolecules, 35, pp. 6490–6493.

    CAS  Google Scholar 

  • Hontanon E, Escudero M J, Bautista C, Garcıa-Ybarra P L and Daza L (2000) Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, J. Power Sources, 86, pp. 363–368.

    CAS  Google Scholar 

  • Hickner M, Kim Y S, Wang F, Zawodzinski T A and McGrath J E (2001) Proton exchange membrane nanocomposites for fuel cells., Intern. SAMPE Tech. Conf., 33, pp. 1519–1532.

    CAS  Google Scholar 

  • Hogarth M and Glipa (2001) High temperature membranes for solid polymer fuel cells, ETSU F/02/00189/REP, DTI/Pub URN 01/893.

    Google Scholar 

  • Holze R, Vogel I and Vielstich W (1986), New oxygen cathodes for fuel cells with organic fuels, J. Electroanal. Chem. J. Electroanal. Chem., 210, pp. 277–286.

    CAS  Google Scholar 

  • Honma I, Nomura S and Nakajima H (2001) Proton conducting organic-inorganic nanocomposites for polymer electrolyte membrane. J. Membr Sci., 185, pp. 83–94.

    CAS  Google Scholar 

  • Hornfield W and Joerissen L (2005) PEM-Fuel Cell Power in the Autonomous Underwater Vehicle DeepC®, Fuel Cells for a Sustainable World, Lucerne, File No. A124.

    Google Scholar 

  • Hung Y and Tawfik H (2005) Testing and Evaluation of aluminum coated bipolar plates of PEM fuel cells operating at 70°C, Proceedings of FUEL CELL 2005 Third International Conference on Fuel Cell Science, Engineering and Technology, May 23–25, 2005, Ypsilanti, Michigan-paper 74018.

    Google Scholar 

  • Ihonen J, Jaouen F, Lindbergh F and Sundhom F (2001) A Novel Polymer Electrolyte Fuel Cell For Laboratory Investigations and In-Situ Contact Resistance Measurements, Electrochim Acta, 46, pp. 2899–2911.

    CAS  Google Scholar 

  • International Fuel Cells (1991) Investigation of Design and Manufacturing Methods for Low-Cost Fabrication of High Efficiency, High Power Density PEM Fuel Cell Power Plant, Final Report FCR-11320A, June 10.

    Google Scholar 

  • Iojoiu C, Chabert F, Mar’echal M, Kissi N E, Guindet J and Sanchez J Y (2005) From polymer chemistry to membrane elaboration—A global approach of fuel cell polymeric electrolytes, J. Power Sources (In press).

    Google Scholar 

  • Ishihara A, Lee K, Doi S, Mitsushima S, Kamiya N, Hara M, Domen K, Fukuda K, and O’Hayre R, Lee S J, Cha S W and Prinz F B (2002) A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading, J. Power Sources, 109, pp. 483–493.

    Google Scholar 

  • Ismagilov Z R, Kerzhentsev M A, Shikina N V, Lisitsyn A S, Okhlopkova L B, Barnakov Ch. N, Sakashita M, Iijima T and Tadokoro K (2005) Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials, Catalysis Today, 102–103, pp. 58–66.

    Google Scholar 

  • James B D, Lomax Jr. F D and (Sandy) Thomas C E (1999) Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems, DTI.

    Google Scholar 

  • Jemeï S, Hissel D, Péra M C and Kauffmann J M (2005) Multi-Parameter Sensitivity Analysis of a Proton Exchange Membrane Fuel Cell Model, 3rd European PEFC Forum, Lucerne, File No. P205.

    Google Scholar 

  • Jannasch P, Recent developments in high-temperature proton conducting polymer electrolyte membranes (2003) Current Opinion, Colloid and Interface Science, 8, pp. 96–102.

    CAS  Google Scholar 

  • Jayaraj J, Kim Y C, Kim K B, Seok H K and Fleury E (2005) Corrosion studies on Fe-based amorphous alloys in simulated PEM fuel cell environment, Science and Technology of Advanced Materials, 6, pp. 282–289.

    CAS  Google Scholar 

  • Jayaraman S and Hillier A C (2001) Construction and Reactivity Mapping of a Platinum catalyst Gradient Using the Scanning Electrochemical Microscope, Langmuir, 17, pp. 7857–7864.

    CAS  Google Scholar 

  • Johnson R, Morgan C, Witmer D and Johnson T (2001) Performance of a Proton Exchange Membrane Fuel Cell Stack, Int. J. Hydrogen Energy, 26, pp. 879–887.

    CAS  Google Scholar 

  • Jonissen L, Gogel V, Kerres J, Garche J (2002) New membranes for direct methanol fuel cells. J Power Sources, 105, pp. 267–73.

    Google Scholar 

  • Joseph S, McClure J C, Chianelli R, Pich P and Sebastian P J (2005) Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC), Int. J. Hydrogen Energy, 30, pp. 1339–44.

    CAS  Google Scholar 

  • Ju R A, An J H, Lee J K and Lee S H (2005) DSP-Based Actively Controlled Fuel Cell/Battery Hybrid DMFC System, 3rd European PEFC Forum, Poster 417.

    Google Scholar 

  • Kammen D M, Lipman T E and Edwards J (2002) Economic and Environmental Analysis of PEM Fuel Cell System Performance Using the Clean Energy Technologies Economic and Emissions Model (CETEEM) A publication from Renewable and Appropriate Energy Laboratory (RAEL).

    Google Scholar 

  • Karnik A Y and Sun J (2005) Modeling and control of an ejector based anode recirculation system for fuel cells, Proceedings of FUELCELL, Third International Conference on Fuel Cell Science, Engineering and Technology May 23–25, 2005, Ypsilanti, Michigan, Paper-74102.

    Google Scholar 

  • Kato H (2000) Ion Exchange and electrode assembly for an electrochemical cell US Patent No. 6,054,230.

    Google Scholar 

  • Kawahara M, Rikukawa M, Sanui K and Ogata N (2000) Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) film, Solid State Ionics, 136–137 pp. 1193–1196.

    Google Scholar 

  • Kempton W and Letendre S E (1997) Electric Vehicles as a New Power Source for Electric Utilities, Transportation Research-D, 2(3), pp. 157–175.

    Google Scholar 

  • Kerres J, Ullrich A, Meier F and Häring T (1999) Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells, Solid State Ionics, 125, pp. 243–249.

    CAS  Google Scholar 

  • Kerres J A (2001) Development of ionomer membranes for fuel cells. J. Membr Sci, 185, pp. 3–27.

    CAS  Google Scholar 

  • Kiefer J, Brack H-P, Huslage J, Buchi F N, Tsakada A, Geiger F, Scherer G G (1999) Radiation grafting: A versatile membrane preparation tool for fuel cell applications. Proceedings of the European Fuel Cell Forum Portable fuel cells conference, Lucerne, pp. 227–235.

    Google Scholar 

  • Kim J D and Honma I (2005) Anhydrous solid state proton conductor based on benzimidazole/monododecyl phosphate molecular hybrids, Solid State Ionics, 176, pp. 979–984.

    CAS  Google Scholar 

  • Kim S, Shimpalee S and van Zee J W (2005) Effect of Flow Field Design and Voltage Change Range on the Dynamic Behavior of PEMFCs, J. Electrochem. Soc., 152, pp. A1265–A1271.

    CAS  Google Scholar 

  • Kissock J K (1998) “Combined Heat and Power for Buildings Using Fuel-Cell Cars”, Proceedings of the ASME International Solar Energy Conference, Albuquerque, NM, June 13–18, pp. 121–132.

    Google Scholar 

  • Kohler J, Starz K-A, Wittphal S and Diehl M (2002) Process for Producing a Membrane Electrode Assembly for Fuel Cells, US Patent 2002/0064593 A1.

    Google Scholar 

  • Kreuer K D, Fuchs A, Ise M, Spaeth M and Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochim Acta, 43, pp. 1281–1288.

    CAS  Google Scholar 

  • Kreuer K D (2001) On the development of proton conducting membranes for hydrogen and methanol fuel cells. J Membr Sci., 185, pp. 29–39.

    CAS  Google Scholar 

  • Krumpelt M, Kumar R, Miller R and Christianson C (1992) Fuel Cell Seminar Program and Abstracts, November 29-December 2, Tucson, Arizona, p. 35.

    Google Scholar 

  • Krumpelt M and Myles K M (1993) An EPRI/GRI Fuel Cell Workshop on Technology Research and Development, April 13–14, Stonehart Associates, Madison, Connecticut.

    Google Scholar 

  • Kucernak A, Ladewig B, Blewitt R and Shrimpton J (2005) Laser Doppler Anemometry Study of Reactant Flow in Fuel Cell Channels, 3rd European PEFC Forum, Lucerne, Poster 21.

    Google Scholar 

  • Kumar A and Reddy R G (2003) Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells, J. Power Sources, 113, pp. 11–18.

    CAS  Google Scholar 

  • Kumar A and Reddy R G (2005) Effect of gas flow-field design in the bipolar/end plates on the steady and transient state performance of polymer electrolyte membrane fuel cells, Journal of Power Sources (In Press).

    Google Scholar 

  • Kulikovsky A A, Kucernakb A and Kornyshevb A A (2004) Feeding PEM fuel cells in Electrochim Acta, 50, pp. 1323–1333.

    Google Scholar 

  • Lakeman J B and Scott K (2003) Abstract, Conference on High Energy Density Electrochemical Power Sources, Nice, France, September 17–20.

    Google Scholar 

  • Laven A (1999) Development of a Prototype Fuel Cell Powered Motor Scooter, Masters Thesis, University of Nevada.

    Google Scholar 

  • Lebedeva N P and Janssen G J M (2005) On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells, Electrochim Acta, June (In Press).

    Google Scholar 

  • Lee S-J, Huang C-H, Chen Y-P, Chen Y-M (2005) Chemical Treatment Method for the Aluminum Bipolar Plates of PEM Fuel Cells, J Fuel Cell Sci & Tech., 2, pp. 208–212.

    CAS  Google Scholar 

  • Lee S-J, Huang C-H, Lai J-J and Chen Y-P (2004) Corrosion-resistant component for PEM fuel cells, Journal of Power Sources, 131, pp. 162–168.

    CAS  Google Scholar 

  • Lee et al. (2005a) The Development of a Heterogeneous Composite Bipolar Plate of a Proton Exchange Membrane Fuel Cell, Ming-San Lee, Long-Jeng Chen, Zheng-Ru He, Shih-Hong Yang, J Fuel Cell Sci & Tech., 2, pp. 14–19.

    Google Scholar 

  • Li T, Wlaschin A, Balbuena P B (2000) Theoretical studies of proton transfer in water and model polymer electrolyte systems, Ind. Eng Chem Res., 40, pp. 4789–800.

    Google Scholar 

  • Li Q, He R, Jensen J O and Bjerrum (2003), Approaches and Recent Development of polymer electrolyte membrane for Fuel Cells operating above 100°C, Chem. Mater., 15, pp. 4896–4915.

    CAS  Google Scholar 

  • Li M, Luo S, Zeng C, Shen J, Lin H and Cao C (2004) Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments, Corrosion Science, 46, pp. 1369–1380.

    CAS  Google Scholar 

  • Lin B (1999) Conceptual design and modeling of a fuel cell scooter for urban Asia, Masters Thesis. Princeton PU/CEES Report 320.

    Google Scholar 

  • Lindermeir A, Rosenthal G, Kunz U and Hoffman U (2004) Improvement of MEAs for direct methanol fuel cells by tuned layer preparation and coating technology, FUEL CELLS, 4, pp. 78–85.

    CAS  Google Scholar 

  • Little A D (1995) Fuel Cells for Building Cogeneration Applications-Cost/Performance Requirements and markets, prepared for the Office of Building Technologies, U.S. Department of Energy, January.

    Google Scholar 

  • Little A D (2000) Cost Analysis of Fuel Cell System for Transportation, Baseline System Cost Estimate, Ref 49739, Department of Energy, March 2000.

    Google Scholar 

  • Litster S and McLean G (2004) PEM fuel cell electrodes, J. Power Sources, 130, pp. 61–76.

    CAS  Google Scholar 

  • Liu B and Bard A J (2002) Scanning Electrochemical Microscopy: Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip, J. Phys. Chem. B, 106, pp. 12801–12806.

    CAS  Google Scholar 

  • Liu F, Yi b, Xing D, Yu J, Hou Z, Fu Y (2003) Development of novel self-humidifying composite membranes for fuel cells, J. Power Sources, 124, pp. 81–89.

    CAS  Google Scholar 

  • Liu H-C, Yan W-M, Soong C-Y and Chen F (2005) Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell, J. Power Sources, 142, pp. 125–133.

    CAS  Google Scholar 

  • Iliev I, Kaisheva A and Gamburzev S (1991) Proceedings of the Intersociety Energy Conversion Engineering Conference, Boston, MA, USA, 3 p. 469.

    Google Scholar 

  • Lomax F D, James B D, Baum G N and Thomas C E (1998) Detailed Manufacturing Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cells for Light Duty Vehicles, Directed Technologies, Inc., Arlington, August.

    Google Scholar 

  • Lovins A B and Williams B D (1999) A Strategy for the Hydrogen Transition. 10th Annual U.S. Hydrogen Meeting, Vienna VA, National Hydrogen Association.

    Google Scholar 

  • Lundblad A, Kiros Y, Onsten A, Jaouen F and Lindbergh G (2005) Porphyrin-Based Catalysts for PEFC Cathodes, 3rd European PEFC Forum, Lucerne July, 2005, File No. B044.

    Google Scholar 

  • Ma Y-L, Wainright J S, Litt M H and Savinell R F (2004) Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 151, pp. A8–A16.

    CAS  Google Scholar 

  • Mathias M, Roth J, Flemimg J and Lehnert W (2003) Diffusion media materials and characterization, Chapter 46, Handbook of Fuel Cells — Fundamentals, Technology and Applications, edited by Wolf Vielstich, Hubert A. Gasteiger, Arnold Lamm. Volume 3: Fuel Cell Technology and Applications, John Wiley & Sons, Ltd.

    Google Scholar 

  • Matsubayashi T, Hamada A, Taniguchi S, Miyake Y and Saito T (1994) Proceedings of the Fuel Cell-Program and Abstracts on the Development of the High Performance Electrode For PEFC, pp. 581–584.

    Google Scholar 

  • Matsushita Electric Ind. Co., (2002) Electrode catalyst for fuel cells, Japanese Patent Application JP 305001.

    Google Scholar 

  • Matsuoka K, Iriyama Y, Abe T and Ogumi Z (2004) 2004 ECS Joint International Meeting, Tapa, October 3–8, (Abstract 1518).

    Google Scholar 

  • Maye M M, Luo J, Han L, Kariuki N L and Zhong C-J (2003) Gold Bull., 36, pp. 75–78.

    CAS  Google Scholar 

  • Mehta V and Cooper J S (2003), Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 128, pp. 32–53.

    Google Scholar 

  • Meng H and Wang C Y (2004) Electron transport in PEFC’s, J. Electrochem. Soc., 151, pp. A358–A367.

    CAS  Google Scholar 

  • Middelman E (2002) Improved PEM fuel cell electrodes by controlled self-assembly, Fuel Cells Bulletin, November 2002, pp. 9–12 Miyake N, Wainright J S, Savinell R F (2001) Evaluation of a sol-gel derived Nafion silica hybrid membrane for proton electrolyte membrane fuel cell applications-I. Proton conductivity and water content. J Electrochem. Soc., 148, pp. A898–A904.

    Google Scholar 

  • Middelman E, Pek J and Verhage A (2005) The PEM Power Plant Project, 3rd European PEFC Forum, Lucerne, File No. B102.

    Google Scholar 

  • Millet S and Mahadevan K (2005) Commercialization scenarios of polymer electrolyte membrane fuel cell applications for stationary power generation in the United States by the year 2015, J. Power Sources (In press).

    Google Scholar 

  • Miller A R and Barnes D L (2005) Technical Challenges of Large Fuel Cell Vehicles, Fuel Cells for a Sustainable World, Lucerne, File No. A122.

    Google Scholar 

  • Misubhshi (2004) Mitsubhishi electric achieves domestic top level energy efficiency of 83% with PEFC cogeneration system using a Lossnay humidifier, www.global.mitsubishielectric.com, Release No. 2322.

    Google Scholar 

  • Mizuhata H, Nakao S and Yamaguchi T (2004) Morphological control of PEMFC electrode by graft polymerization of polymer electrolyte onto platinum-supported carbon black, J. Power Sources, 138, pp. 25–30.

    CAS  Google Scholar 

  • Morikawa H, Tsuihiji N, Mitsui T and Kanamura K (2004) Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process, J. Electrochem. Soc., 151, pp. A1733–A1737.

    CAS  Google Scholar 

  • Mosdale R, Gebel G and Pineri M “Water Profile Determination in a Running Proton Exchange Membrane Fuel Cell Using Small-Angle Neutron Scattering” (1996) J. Membrane Science, 118, pp. 269–277.

    CAS  Google Scholar 

  • Mukerjee S and Srinivasan Soriaga M P (1995) Role of structural & electronic properties of Pt and Pt alloys on electrolcatalysis in oxygen reduction, J. Electrochem. Soc., 142, pp. 1409–1422.

    CAS  Google Scholar 

  • Mukerjee S, Urian R C, Lee S J, Ticianelli E A and McBreen J (2004) Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electro catalysts in PEMFCs, J. Electrochem. Soc., 151, pp. A1094–A1103.

    CAS  Google Scholar 

  • Munch W, Kreuer K D, Silvestri W, Maier J, Seifert G (2001) The diffusion mechanism of an excess proton in imidazole molecule chains: First results of an ab initio molecular dynamics study. Solid State Ionics, 145, pp. 437–443.

    CAS  Google Scholar 

  • Murphy O J, Hitchens G D and Manko D J (1994) High power density proton-exchange membrane fuel cells, J. Power Sources, 47, pp. 353–368.

    CAS  Google Scholar 

  • Musser J and Wang C Y (2000) Heat transfer in a fuel cell engine proceedings of NHTC’00, 34th National Heat Transfer Conference, Pittsburgh, Aug. 20, 2000.

    Google Scholar 

  • Neyerlin K C, Gasteiger H A, Mittelsteadt C K, Jorne J and Gua W (2005) Effect of Relative Humidity on Oxygen Reduction Kinetics in a PEMFC, J. Electrochem. Soc., 152, pp. A1073–A1080.

    CAS  Google Scholar 

  • Nakajima H, Nomura S, Sugimoto T, Nishikawa S, Honma I (2002) High temperature proton conductive organic-inorganic nanohybrids for polymer electrolyte membrane. Part II. J Electrochem. Soc., 149, pp. A953–A959.

    CAS  Google Scholar 

  • Nguyen T V and White R E “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells” (1993) J. Electrochem. Soc., 140, pp. 2178–2186.

    CAS  Google Scholar 

  • Niehues M and Edwards T H (2000) Fuel Cells for Rail Vehicles. Proceedings of the UIC Energy Efficiency Conference, Paris, 2000.

    Google Scholar 

  • Niyogi S, Kumar R and Myers D (2005) High-Temperature Polymer Electrolyte Membranes, DOE Hydrogen program review, May 2005.

    Google Scholar 

  • O’Hayre R, Lee S J, Cha S W and Prinz F B (2002) A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading, J. Power Sources, 109, pp. 483–493.

    CAS  Google Scholar 

  • On Isa Bar, Kirchain R and Roth R (2002) Technical cost analysis of PEM Fuel cells, J Power sources, 109, pp. 71–75.

    Google Scholar 

  • Oosthuizen P H, Sun L and McAuley (2005) The effect of channel-to-channel gas crossover on the pressure and temperature distribution in PEM fuel cell flow plates, Applied Thermal Engineering, 25, pp. 1083–1096.

    CAS  Google Scholar 

  • Oszcipok M, Riemann D, Kronenwett U, Kreideweis M and Zedda M (2005) Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells, J. Power Sources, 145, pp. 407–415.

    CAS  Google Scholar 

  • Oszcipok M, Hakenjos A, Riemann D and Hebling C (2005a) Freezing Processes in PEM Fuel Cells, 3rd European PEFC Forum, Lucerne, File No. P114.

    Google Scholar 

  • Otaa K (2005) Tantalum Oxynitride for a Novel Cathode of PEFC, Electrochemical and Solid-State Letters, 8, A201–A203.

    Google Scholar 

  • Paddison S J, Paul R and Kreuer K D (2002) Theoretical computed proton diffusion coefficients in hydrated PEEKK membranes. Phys Chem. Chem Phys., 4, pp. 1151–1157.

    CAS  Google Scholar 

  • Pan Mu, Tang H, Jiang and Liu Z (2005) Fabrication and Performance of Polymer Electrolyte Fuel Cells by Self-Assembly of Pt Nanoparticles, J. Electrochem. Soc., 152, pp. A1081–A1088.

    CAS  Google Scholar 

  • Park J-H, Kim J-H, Lee H-K, Lee T-H and Joe Y (2004) A novel direct deposition of Pt catalysts on Nafion impregnated with polypyrrole or PEMFC, Electrochim Acta, 50, pp. 765–771.

    Google Scholar 

  • Pehnt M, Fuel cells for Distributed Power: Benefits, Barriers and Perspectives, www.panda.org/EPO.

    Google Scholar 

  • Perry M L and Kotso S (2004) A Back-up Power Solution with No Batteries, INTELEC 2004 Proceedings, pp. 210–217.

    Google Scholar 

  • Pharkya P, Alfantazi A and Farhat Z (2005) Fabrication Using High-Energy Ball-Milling Technique and Characterization of Pt-Co Electrocatalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells, J Fuel Cell Science and Technology, 2, pp. 171–177.

    CAS  Google Scholar 

  • Popov et al., (2005) Novel Non-Precious Metals for PEMFC: Catalyst Selection through Molecular Modeling and Durability Studies, Hydrogen, Fuel Cells and Infrastructure Technologies Program, 2005 Annual Review, Washington, DC, May 23–27.

    Google Scholar 

  • Popelis I, Tsukada A and Scherer G (1999) “12 Volt 300 Watt PEFC power pack”, Proceedings of the European Fuel Cll Forum Portable Fuel Cells Conference, Lucerne, pp. 147–155.

    Google Scholar 

  • Poppe D, Frey H, Kreuer K D, Heinzel A, Mulhaupt R (2002) Carboxylated and sulfonated poly(arylene-co-arylene sulfone)s: thermostable polyelectrolytes for fuel cell applications. Macromolecules, 35, pp. 7936–41.

    CAS  Google Scholar 

  • Prasanna M, Ha H Y, Cho E A, Hong S-A and Oh I (2004) Investigation of oxygen gain in polymer electrolyte membrane fuel cells, J. Power Sources, 137, pp. 1–8.

    CAS  Google Scholar 

  • Prater K (1990) “The renaissance of the solid polymer fuel cell”, J. Power Sources, 29, pp. 239–250.

    CAS  Google Scholar 

  • Preischel C, Hedrick P and Hahn A (2001) Continuous Method for Manufacturing a Laminated Electrolyte and Electrode Assembly, US Patent 6,291,091 Bl.

    Google Scholar 

  • Rajalakshmi N, Jayanth T T and Dhathathreyan K S (2003) Effect of carbon dioxide and ammonia on polymer electrolyte membrane fuel cell performance, FUEL CELLS, 3, pp. 177–180.

    Google Scholar 

  • Rajalakshmi N, Ryu H and Dhathathreyan K S (2004) Platinum catalysed membranes for proton exchange membrane fuel cells — higher performance, Chemical Engineering Journal, 102, pp. 241–247.

    CAS  Google Scholar 

  • Rajalakshmi N, Ryu H, Shaijumon M M and Ramaprabhu S (2005) Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material, J. Power Sources, 140, pp. 250–257.

    CAS  Google Scholar 

  • Rajalakshmi N, Velayutham G, Ramya K, Subramanyam C K and Dhathathreyan K S (2005) Characterisation and Optimization of low cost activated carbon fabric as a substrate layer for PEMFC electrodes, Proceedings of Fuel Cell 2005, Third International Conference on Fuel Cell Science, Engineering and Technology May 23–25, Ypsilanti, Michigan, USA, Paper-74182.

    Google Scholar 

  • Ramani V, Kunz H R and Fenton J M (2004) Investigation of Nafion ®/HPA composite membranes for high temperature/ low relative humidity PEMFC operation, J. Membrane Science, 232, pp. 31–44.

    CAS  Google Scholar 

  • Rao C R K and Trivedi D C (2005) Chemical and electrochemical depositions of platinum group metals and their applications, Coordination Chemistry Reviews, 249, pp. 613–631.

    CAS  Google Scholar 

  • Reichman S, Duvdevani T, Aharon A, Philosoph M, Golodnitsky D and Peled E (2005) A novel PTFE-based proton-conductive membrane, J. Power Sources (In Press).

    Google Scholar 

  • Reiner A, Hajbolouri F, Döbeli M, Wokaun A and Scherer G G (2005) Co-Sputtering: A Novel Platinum-Carbon Catalyst Preparation Method, 3rd European PEFC Forum, Lucerne, Poster 109.

    Google Scholar 

  • Ren X, Wilson M S, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells, J. Electrochem. Soc., 143, pp. L12–L15.

    CAS  Google Scholar 

  • Reeve R W, Eweka I E and Mepsted G O (2003) Eighth Grove Fuel Cell Symposium, London, September 24–26, 04B.6.

    Google Scholar 

  • Rogg S, Höglinger M, Zwittig E, Pfender C, Kaiser W and Heckenberger T (2003) Cooling Modules for Vehicles with a Fuel Cell Drive, FUEL CELLS, 3, pp. 153–158.

    CAS  Google Scholar 

  • Roser J, Dyck A, Gogel V, Bauer B, Holdik H, Dohle H, Müller M, Felber S and Wilde P (2005) Flexible Graphite Foil Solutions for Low-Cost PEM Fuel Cell Systems, 3rd European PEFC Forum, Lucerne, Poster 123.

    Google Scholar 

  • Ross P N (2005) New Electrocatalysts For Fuel Cells, DOE hydrogen program review 2005.

    Google Scholar 

  • Rosso I, Galletti C, Saracco G, Garrone E and Specchia V (2004) Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation: H2 gas purification for fuel cell, Applied Catalysis B: Environmental, 48, pp. 195–203.

    CAS  Google Scholar 

  • Ruge M and Hoekel M (2005), Air-Cooled Fuel Cell Stack Made of Foil Materials, 3rd European PEFC Forum, Lucerne File No. B096.

    Google Scholar 

  • Santiago E I, Batista M S, Assaf E M and Ticianelli E A (2004) Mechanism of CO Tolerance on Molybdenum-Based Electrocatalysts for PEMFC, J. Electrochem. Soc., 151, pp. A944–A949.

    CAS  Google Scholar 

  • Santis M, Schmid D, Ruge M, Freunberger S and Buechi F N (2004), Modular Stack—Internal Air Humidification Concept—Verification in a 1 kW stack, FUEL CELLS, 4, pp. 214–218.

    CAS  Google Scholar 

  • Savadogo O, Xing B (2000) Hydrogen oxygen polymer electrolyte membrane fuel cell (PEMFC) based on acid-doped polybenzimidazole (PBI). J New Mater Electrochem. Sys., 3, pp. 345–349.

    Google Scholar 

  • Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C (1994) A polymer electrolyte for operation at temperatures upto 200 C, J. Electrochem. Soc., 141, pp. L46–L48.

    CAS  Google Scholar 

  • Sawai K and Suzuki N (2004) Highly Active Nonplatinum Catalyst for Air Cathodes, J. Electrochem. Soc., 151, pp.A2132–A2137.

    CAS  Google Scholar 

  • Shukla A K et al., (2003) The promise of fuel-cell based automobiles, Bull Mat Sci., 26, pp. 207–214.

    CAS  Google Scholar 

  • Schmidt T J, Gasteiger H J and Behm R J (1999) Rotating disc electrode measurements on CO tolerance of high surface area Pt/Vulcan, J. Electrochem. Soc., 146, pp. 1296–1304.

    CAS  Google Scholar 

  • Schuster M, Meyer W H, Wegner G (2001) Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ionics, 145, pp. 85–92.

    CAS  Google Scholar 

  • Senn S M and Poulikakos D, Polymer Electrolyte fuel cells with porous materials as fluid distributors and comparisons with traditional channeled systems, Transactions of the ASME, 126, pp. 410–418.

    Google Scholar 

  • Serincan M F and Yeilyurt S (2005) An Analysis of a Proton Electrolyte Membrane Fuel Cell (PEMFC) at Start-ups and Failures, 3rd European PEFC Forum, Lucerne, File No. P203.

    Google Scholar 

  • Shan Y and Choe S-Y (2005) A high dynamic PEM fuel cell model with temperature effects, J. Power Sources, 145, pp. 30–39.

    CAS  Google Scholar 

  • Shin S-J, Lee J-K, Ha H-Y, Hong S-A, Chun H-S and Oh I-H (2002) Effect of the catalyst ink preparation method on the performance of polymer electrolyte membrane fuel cells, J. Power Sources, 106, pp. 146–152.

    CAS  Google Scholar 

  • Shin J H, Passerini S, Shin J H and Passerini S (2004) PEO-LiN.SO2CF2(CF3)2 Polymer Electrolytes V. Effect of Fillers on Ionic Transport Properties, J. Electrochem. Soc., 151, pp. A238–A245.

    CAS  Google Scholar 

  • Siroma Z, Sasakura T, Yasuda K, Azuma M and Miyazaki Y (2003) Effects of ionomer content on mass transport in gas diffusion electrodes for proton exchange membrane fuel cells, Journal of Electroanal. Chem, 546, pp. 73–78.

    CAS  Google Scholar 

  • Smith R A (1984) Coextruded Multilayer Cation Exchange Membranes, US Patent 4,437,952.

    Google Scholar 

  • Smitha B, Sridhar S and Khan A A (2005) Solid polymer electrolyte membranes for fuel cell applications—A review, J. Membrane Sci., 259, pp. 10–26.

    CAS  Google Scholar 

  • Song S, Douvartzides S and Tsiakarasm P (2005) Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications, J. Power Sources (In Press).

    Google Scholar 

  • Souzy R and Ameduri B (2005) Functional fluoropolymers for fuel cell membranes, Prog. Polymer Sci., 30, pp. 644–687.

    CAS  Google Scholar 

  • Springer T E, Zawodzinski T A and Gottesfeld S (1991) Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc., 138, pp. 2334–2341.

    CAS  Google Scholar 

  • Srinivasan S, Ferreira A, Mosdale R, Mukerjee S, Kim J, Hirano S, Lee S, Buchi F and Appleby A (1994) Proceedings of the Fuel Cell—Program and Abstracts on the Proton Exchange Membrane Fuel Cells for Space and Electric Vehicle Application, pp. 424–427.

    Google Scholar 

  • Staiti P, Arico A S, Baglio V, Lufrano F, Passalacqua E, Antonucci V (2001) Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 145, pp. 101–107.

    CAS  Google Scholar 

  • Staiti P (2001a) Proton conductive membranes constituted of silicotungstic acid anchored to silica-polybenzimidazole matrices, New Matter Electrochem. Syst., 4, pp. 181–186.

    CAS  Google Scholar 

  • Strachana N and Farrell A (2005) Emissions from distributed vs. centralized generation: The importance of system, performance, J. Energy Policy (In Press).

    Google Scholar 

  • Stangar U L, Groselj N, Orel B, Schmitz A and Colomban P (2001) Proton-conducting sol—gel hybrids containing heteropoly acids. Solid State Ionics, 145, pp. 109–118.

    Google Scholar 

  • Staudt R (2005) Development of Polybenzimidazole-based High Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications, 2005 DOE Hydrogen, Fuel Cells & Infrastructure Technologies.

    Google Scholar 

  • Steele B C H and Heinzel A (2001) Materials for fuel-cell technologies. Nature, 414, pp. 345–52.

    CAS  Google Scholar 

  • Subramanian C K, Rajalakshmi N, Ramya K and Dhathathreyan K S (2000) Bull. Electrochem., 16, pp. 350–354.

    Google Scholar 

  • Swider-Lyons K, Bouwman P, Urgate N and Dmowski W (2003) Low Platinum hydrous metal oxides for PEMFC cathodes, DoE Review, Berkeley C A, May 2003.

    Google Scholar 

  • Tang H and Pintauro P N (2001) Polyphosphazene membranes IV. Polymer morphology and proton conductivity in sulfonated poly bis(3-methylphenoxy) phosphazene films. J Appl. Polym. Sci., 79, pp. 49–59.

    CAS  Google Scholar 

  • Taylor E J, Anderson E B and Vilambi N (1992) Preparation of high platinum utilization gas diffusion electrodes for proton exchange membrane fuel cells, J. Electrochem. Soc., 139, pp. L45–L46.

    CAS  Google Scholar 

  • Teranishi K, Tsushima S and Hirai S (2005) Study of the Effect of Membrane Thickness on the Performance of Polymer Electrolyte Fuel Cells by Water Distribution in a Membrane, Electrochemical and Solid-State Letters, 8, A281–A284.

    CAS  Google Scholar 

  • Thangamuthu R and Lin C W (2005) Membrane electrode assemblies based on sol-gel hybrid membranes-A preliminary investigation on fabrication aspects, J. Power Sources (In Press).

    Google Scholar 

  • Thomas C E, James B D, Lomax Jr F D and Kuhn Jr I F (2000) Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?, Int. J. Hydrogen Energy, 25, pp. 551–557.

    CAS  Google Scholar 

  • Travitsky N, Ripenbein T, Golodnitsky D, Livshits V, Rosenberg Y, Lereah Y, Burstein L and Peled E (2005) Nanometric Platinum and Platinum-Alloy-Supported Catalysts for Oxygen Reduction in PEM Fuel Cells, 3rd European PEFC Forum, Lucerne, Poster 105.

    Google Scholar 

  • Turpin M (2005) Power from Portable PEFC Generators, Fuel Cells for a Sustainable World, Lucerne, File No. A052.

    Google Scholar 

  • Uda T and Haile S M (2005) Thin-Membrane Solid-Acid Fuel Cell, Electrochemical and Solid-State Letters, 8, A245–A246.

    CAS  Google Scholar 

  • Venkataraman R, Kunz H R and Fenton J M (2004) CO-Tolerant, Sulfided Platinum Catalysts for PEMFCs, J. Electrochem. Soc., 151, pp. A710–A715.

    CAS  Google Scholar 

  • Vickers C (1996) Proceedings of Fuel Cell Seminar, Orlando, FL, USA, 1996.

    Google Scholar 

  • Villers D, Jacques-Bédard X and Dodelet J (2004) Fe-Based Catalysts for Oxygen Reduction in PEM Fuel Cells, Pretreatment of the Carbon Support, J. Electrochem. Soc., 151, pp. A1507–A1515.

    CAS  Google Scholar 

  • Walker M, Baumgärtner K M, Kaiser M, Kerres J, Ullrich A and Räuchle E (1999) Proton-conducting polymers with reduced methanol permeation, J. Appl. Polym. Sci., 74, pp. 67.

    CAS  Google Scholar 

  • Walter J (2000) Modellierung eines Brennstoffzellen Antribesstrangs VDI Beriche Nr. 1565: p. 355.

    Google Scholar 

  • Wang F, Hickner M, Kim Y S, Zawodzinski T A and McGrath J E (2002) Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J Membrane Sci., 197, pp. 231–42.

    CAS  Google Scholar 

  • Wang H, Brady M P, Teeter G and Turner J A (2004) Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates: Part 1: Model Ni-50Cr and austenitic 349™ alloys, J. Power Sources, 138, pp. 86–93.

    CAS  Google Scholar 

  • Wang H, Brady M P, More K L, Meyer III H M and Turner J A (2004a) Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates: Part 2: Beneficial modification of passive layer on AISI446, J. Power Sources, 138, pp. 79–85.

    CAS  Google Scholar 

  • Wang H and Turner J A (2004b), Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells, J. Power Sources, 128, pp. 193–200.

    CAS  Google Scholar 

  • Warshay M and Prokopius P R (1990) “The fuel cell in space yesterday, Today and Tomorrow”, J. Power Sources, 29, pp. 193–200.

    CAS  Google Scholar 

  • Watanabe M, Uchida H, Seki Y, Emori M and Stonehart P (1996) Self humidifying polymer electrolyte membrane for fuel cells, J. Electrochem. Soc., 143, pp. 3847–3852.

    CAS  Google Scholar 

  • Wei Z D, Chan S H, Li L L, Cai H F, Xia Z T and Sun C X (2005) Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction, Electrochim Acta, 50, pp. 2279–2287.

    CAS  Google Scholar 

  • Wells P, Wiltshire R, King C, Thompsett D, Crabb E M and Russell A E (2005) Preparation of Cr/Pt/C Catalysts by the Controlled Surface Modification of Pt/C Using an Organometallic Precursor, 3rd European PEFC Forum, Lucerne, Poster 119.

    Google Scholar 

  • Williams M V, Leonard E B, Bonville H, Kunz R and Fentona J M (2004) Characterization of Gas Diffusion Layers for PEMFC, J. Electrochem. Soc., 151, pp. A1173–A1180.

    CAS  Google Scholar 

  • Wilson M S, Springer T E, Zawodzinski T A and Gottesfeld S (1993) Proceedings 28th Intersociety Energy Conversion Engineering Conference, 1, 1993, Atlanta, GA, p. 1203.

    Google Scholar 

  • Wolk R H (1999) Fuel cells for Homes and Hospitals, IEEE Spectrum, 36, pp. 45–52.

    Google Scholar 

  • Wood D L, Yi Y S, Nguyen T V (1998) Effect of direct liquid water injection and interdigitated flow filed on the performance of proton exchange membrane fuel cells, Electrochim. Acta, 43, pp. 3795–3809.

    CAS  Google Scholar 

  • Wu S H, Kotak D B and Fleetwood M S (2005) An integrated system framework for fuel cell-based distributed green energy applications, Renewable Energy, 30, pp. 1525–1540.

    Google Scholar 

  • Wu J, Liu Q and Fang H (2005) Toward the optimization of operating conditions for hydrogen polymer electrolyte fuel cells, J. Power Sources (In Press).

    Google Scholar 

  • Xie Z, Navessin T, Shi K, Chow R, Wang Q, Song D, Andreaus B, Eikerling M, Liu Z and Holdcroft S (2005) Functionally Graded Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells II. Experimental Study of the Effect of Nafion Distribution, J. Electrochem. Soc., 152, pp. A1171–A1179.

    CAS  Google Scholar 

  • Xie J, Wood D L, Wayne D M, Zawodzinski T A, Atanassov P and Borup R L (2005) Durability of PEFC’s at high humidity conditions, J. Electrochemical Soc., 152, pp. A104–A113.

    CAS  Google Scholar 

  • Yamada Y, Ueda A, Shioyama H and Kobayashi T (2004) High-throughput screening of PEMFC anode catalysts by IR thermography, Applied Surface Science, 223, pp. 220–223.

    CAS  Google Scholar 

  • Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly A B (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources, 103, pp. 1–9.

    CAS  Google Scholar 

  • Yang T-H, Yoon Y-G, Park G-K, Lee W-Y and Kim C S (2004) Fabrication of a thin catalyst layer using organic solvents, J. Power Sources, 127, pp. 230–233.

    CAS  Google Scholar 

  • Yang X-G, Burke N, Wang C-Y, Tajiri K and Shinoharab K (2005) Simultaneous measurements of species and current distributions in a PEFC under low-humidity operation, J. Electrochem. Soc., 152, pp. A759–A766.

    CAS  Google Scholar 

  • Yi J S and Nguyen T V (1998) “An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 145, pp. 1149–1159.

    CAS  Google Scholar 

  • Yoneda S and Ohno Y (2005) Stochastic Approach for the Analysis of PEFC Behavior, 3rd European PEFC Forum, Lucerne, File No. B075.

    Google Scholar 

  • Yoon C B, Meyer H W and Wegner G (2001) New functionalized polyurethane with proton conductivity. Synthetic Met., 119, pp. 465–466.

    CAS  Google Scholar 

  • Yoon Y-G, Park G-G, Yang T-H, Han Y-N, Lee W-Y and Kim C S (2003) Effect of pore structure of catalyst layer in a PEMFC on its performance, Int. Journal of Hydrogen Energy, 28, pp. 657–662.

    CAS  Google Scholar 

  • Yu T L, Lin Hsiu-Li, Shen Kun-Sheng, Huang Li-Ning, Chang Yu-Chen, Jung Guo-Bin and Huang J C ((2004) Nafion/PTFE Composite Membranes for Fuel Cell Applications, Journal of Polymer Research, 11, pp. 217–224.

    CAS  Google Scholar 

  • Yu J, Yoshikawa Y, Matsuura T, Islam M D and Hori M (2005) Preparing Gas-Diffusion Layers of PEMFCs with a Dry Deposition Technique, Electrochemical and Solid-State Letters, 8, pp. A152–A155.

    CAS  Google Scholar 

  • Yu J, Matsuura T, Yoshikawa Y, Islam M D and Hori M (2005) In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification, Electrochemical and Solid-State Letters, 8, pp. A156–A158.

    CAS  Google Scholar 

  • Yu P, Pemberton M and Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs, J. Power Sources, 144, pp. 11–20.

    CAS  Google Scholar 

  • Zawodzinski T A, DeRouin C, Radzinski S, Herman R J, Smith V T, Springer T E and Gottesfeld S (1993) Water uptake by and transport through Nafion 117 membrane, J. Electrochem. Soc., 140, pp. 1041–1047.

    CAS  Google Scholar 

  • Zawodzinski T A, Development of New Polymer Electrolytes for Operation at High Temperature and Low Relative Humidity, DOE Hydrogen program review, May 2005.

    Google Scholar 

  • Zen J-M and Wang C W (1994) Oxygen reduction on ruthenium oxide pyrochlore produced in a proton exchange membrane, J. Electrochem. Soc., 141, pp. L51–L52.

    CAS  Google Scholar 

  • Zhao et al. (2005) Theoretical and experimental studies of water injection scroll compressor in automotive fuel cell systems, Yuanyang Zhao, Liansheng Li, Huagen Wu, Pengcheng Shu, Energy Conversion and Management, 46, pp. 1379–1392.

    CAS  Google Scholar 

  • Zhong C-J and Maye M M (2001) Core Shell assembled nanoparticles as catalysts, Adv. Mater., 13, pp. 1507–1511.

    CAS  Google Scholar 

  • Zhong C-J, Luo J, Maye M M, Han L and Kariuki N N (2003) Nanostructured Gold and Alloy Electrocatalysts, in: B Zhou, S Hermans, G A Somorjai (Eds.), Nanotechnology in Catalysis, Kluwer Academic/Plenum Publishers, (Chapter 11).

    Google Scholar 

  • Zhong C-J, Luo J, Maye M M, Han L and Kariuki N (2003) Proceeding of the GOLD 2003, Vancouver, Canada, September–October.

    Google Scholar 

  • Zhu W H, Payne R U and Tatarchuk B J (2005) Critical flow rate of anode fuel exhaust in a PEM fuel cell system, J. Power Sources (In Press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Anamaya Publishers, New Delhi, India

About this chapter

Cite this chapter

Dhathathreyan, K.S., Rajalakshmi, N. (2007). Polymer Electrolyte Membrane Fuel Cell. In: Basu, S. (eds) Recent Trends in Fuel Cell Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68815-2_3

Download citation

Publish with us

Policies and ethics