Advertisement

Materials for Solid Oxide Fuel Cells

  • Rajendra N. Basu

Abstract

Over the past one decade, several cell component materials and their combinations have been attempted to match with the appropriate requirements of solid oxide fuel cells (SOFCs). A large number of cell component materials with superior properties have been developed. The general observation is that most of the technological challenges associated with the development of SOFCs are related to materials science. For example, development of superior oxide-ion conductor electrolyte as well as cost-effective fabrication processes involves tremendous materials challenges. The improvements of the materials properties mostly include electrical conductivity, catalytic activity, stability and thermal expansion coefficient. Of late, significant improvements have also been made in the area of fast oxide-ion conductors. These oxide-ion conductors show extraordinarily high electrical conductivity compared to traditional zirconia-electrolyte. This helps SOFC not only to operate at lower temperature but also minimizes the polarization losses which is the key factor for a high performance cell (high power density or power per unit area). The differences between the operating cell voltage and the expected reversible voltage is termed as polarization or overpotential. More clear understanding of the fundamentals of these materials has been published by several groups through numerous articles (Steele 1993, 2000, Mogensen et al. 2000, Goodenough 2003, Singhal et al. 2003, Stöver et al. 2003, Kilner 2005). Reduction of electrolyte thickness also has tremendous advantages particularly from the technological point of view. Lower the electrolyte thickness lower is the internal resistance of the electrolyte, which in turn helps the cell to operate at a considerably lower temperature. The current research trend undoubtedly is more focused towards the development of high performance SOFC at low temperature (650°C and below). For making such high performance cell, inter facial contacts between two adjacent cell components is very critical. Therefore, an excellent compatibility (connectivity) between electrolyte and electrodes, and also with the interconnect (while stacking) is absolutely necessary.

Keywords

Fuel Cell Solid Oxide Fuel Cell Solid State Ionic Temperature Solid Oxide Fuel Cell Metallic Interconnect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, H.U. (1992), Review of p-type doped perovskite materials for SOFC and other applications, Solid State Ionic, 52, 33–41.CrossRefGoogle Scholar
  2. Anderson, H.U., Tai, L.W., Chen, C.C., Nasrallah, M.M. and Huebner, W. (1995), Review of the structural and electrical properties of the (LaSr)(CoFe)O3 system, in: Proceedings of the Forth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Eds. M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal. The Electrochemical Society Proceedings Series, Pennington, NJ, p. 375–384.Google Scholar
  3. Anderson, H.U. and Tietz, F. (2003), Interconnects, in: High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Eds. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 173–195.Google Scholar
  4. Arachi, A., Sakai, H., Yamamoto, O., Takeda, Y. and Imanishi, N. (1999), Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system, Solid State Ionics, 121, 133–139.CrossRefGoogle Scholar
  5. Armstrong, T.R., Hardy, J.S., Simmer, S.P. and Stevenson, J.W. (1999), Optimizing lanthanum chromite interconnects for solid oxide fuel cells, Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Eds. S.C. Singhal and M. Dokiya. The Electrochemical Society Proceedings Series, Pennington, NJ, pp. 706–715.Google Scholar
  6. Armstrong, T.J., Homel, M.A. and Virkar, A.V. (2003), Evaluation of metallic interconnects for use in intermediate temperature SOFC, Eigth International Symposium on Solid Oxide Fuel Cells, Eds. S.C. Singhal and M. Dokiya, pp. 841–850. The Electrochemical Society, Pennington, NJ, USA.Google Scholar
  7. Badwal, S.P.S. and Foger, K. (1997), Materials for Solid Oxide Fuel Cells, Materials Forum, 21, 187–224.Google Scholar
  8. Badwal, S.P.S. (1992), Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics, 52, 23–32.CrossRefGoogle Scholar
  9. Badwal, S.P.S., Ciaachi, F.T. and Milosevic, D. (2000), Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cells, Solid State Ionics, 136–137, 91–99.CrossRefGoogle Scholar
  10. Bahadur, D., Lahl, N., Singheiser, L. and Hilpert, K. (2004), Influence of Nucleating agents on chemical interaction of MgO-Al2O3-SiO2-B2O3 glass sealant with components of SOFCs, J. Electrochem. Soc., 151, A558–A562.CrossRefGoogle Scholar
  11. Bance, P., Brandon, N.P., Grivan, B., Holbeche, P., O’Dea, S. and Steele, B.C.H. (2004), Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power, J. Power Sources, 131, 86–90.CrossRefGoogle Scholar
  12. Bansal, N.P. and Gamble, E.A. (2005), Crystallization kinetics of a SOFC seal glass by DTA, J. Power Sources, Available online.Google Scholar
  13. Barford, R., Koch, S., Liu, Y.-L, Larsen, P.H. and Hendriksen, P.V. (2003), Long-term tests of DK-SOFC cells, Eighth International Symposium on Solid Oxide Fuel Cells, Eds. S.C. Singhal and M. Dokiya, pp. 1158–1166. The Electrochemical Society, Pennington, NJ, USA.Google Scholar
  14. Barnett, S.A. (2003), Direct hydrocarbon SOFCs, Handbook of Fuel Cells — Fundamentals, Technology and Applications, Edited by W. Vielstich, H. A. Gasteiger and A. Lamm, Volume 4: Fuel Cell Technology and Applications, pp. 1098–1108, John Wiley & Sons, Ltd.Google Scholar
  15. Basu, R.N., Randall, C.A. and Mayo, M.J. (2001), Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition, J. Am. Ceram. Soc. 84, 33–40.Google Scholar
  16. Basu, R.N., Altin, O., Mayo, M.J., Randall, C.A. and Eser, S. (2001), Pyrolytic carbon deposition on porous cathode tubes and its use as an interlayer for solid oxide fuel cell zirconia electrolyte fabrication, J. Electrochem. Soc., 148, A506–A512.CrossRefGoogle Scholar
  17. Basu, R.N., Tietz, F., Teller, O., Wessel, E., Buchkremer, H.P. and Stöver, D. (2003), LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells, J. Solid State Electrochem., 7, 416–420.CrossRefGoogle Scholar
  18. Basu, R.N., Tietz, F., Wessel, E. and Stöver, D. (2004), Interface reactions during co-firing of solid oxide fuel cell components, J. Mater. Process. Technol., 147, 85–89.CrossRefGoogle Scholar
  19. Basu, R.N., Blass, G., Buchkremer, H.P., Stöver, D., Tietz, F., Wessel, E. and Vinke, I.C. (2005), Simplified processing of anode-supported thin film planar solid oxide fuel cells, J. Euro. Ceram. Soc., 25, 463–471.CrossRefGoogle Scholar
  20. Battle, P.D., Catlow, C.R.A., Drennan, J. and Murray, A.D. (1983), J. Phys. C: Solid State Phys. 16, L561, The structural properties of the oxygen conducting δ-phase of Bi2O3.CrossRefGoogle Scholar
  21. Baur, E. and Preis, H. (1937), Über Brennstoffketten mit Festkörpern (On fuel chains with solids), Z Elektrochem., 43, 727–732.Google Scholar
  22. Beaudet-Savignat, S., Lima, A., Brathet, C. and Henry, A. (2003), Elaboration and ionic conduction of apatite-type rare-earth oxides, Proc. of the Eighth International Symposium on Solid Oxide Fuel Cells (SOFC-VIII), Eds. S.C. Singhal and M. Dokiya, pp. 372–378.Google Scholar
  23. Boivin, J.C. and Mairesse, G. (1998), Recent material developments in fast oxide ion conductors, Chem. Mater. 10, 2870–2888.CrossRefGoogle Scholar
  24. Bonanos, N., Knight, K.S. and Ellis, B. (1995), Perovskite solid electrolytes: Structure, transport properties and fuel cell applications, Solid State Ionics, 79, 161–170.CrossRefGoogle Scholar
  25. Bram, M., Brünings, S.E., Meschke, F., Meulenberg, W.A., Buchkremer, H.P., Steinbrech, R.W. and Stöver, D. (2001), Application of metallic gaskets in SOFC stacks, Proc. Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), Eds. H. Yokokawa and S.C. Singhal, pp. 875–884, The Electrochemical Soc., Pennington, NJ, USA.Google Scholar
  26. Bram, M., Reckers, S., Drinovac, P., Monch, J., Steinbrech, R.W., Buchkremer, H.P. and Stöver, D. (2004), Deformation behavior and leakage tests of alternating sealing materials for SOFCs stacks, J. Power Sources, 138, 111–119.CrossRefGoogle Scholar
  27. Brisse, A., Barthet, C., Sauvet, A.L., Beaudet-Savignat, S. and Fouletier, J., Study of a new solid oxide fuel cell operated at intermediate temperature 650°–700°C, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 363–370. The Electrochemical Soc., Inc., Pennington, NJ, USA.Google Scholar
  28. Brown, M., Primdahl, S. Mogensen, M. (2000), Structure/performance relations for Ni/yttria-stabilized zirconia anodes for solid oxide fuel cells, J. Electrochem. Soc. 147, 475–485.CrossRefGoogle Scholar
  29. Buchkremer, H.P., Diekmann, U. and Stöver, D. (1996), Components manufacturing and stack integration of an anode supported planar SOFC systems, Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1, Ed. B. Thorstensen. Göttingen, Germany, pp. 221–228.Google Scholar
  30. Buchkremer, H.P., Diekmann, U., de Haart, L.G., Kabs, H., Stimming, U. and Stöver, D. (1997), Advances in the anode-supported planar SOFC technology, Proc. of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), Eds. U. Stimming, Singhal, S.C., Tagawa, H. and Lehnert, W. pp. 160–170, The Electrochemical Soc. Inc., Pennington, NJ, USA.Google Scholar
  31. Chakraborty, A. (1995), Preparation and characterization in pure and substituted LaMnO3 for use as cathode material for solid oxide fuel cells, PhD Thesis, Jadavpur University, Calcutta, India.Google Scholar
  32. Chakraborty, A., Basu, R.N. and Maiti, H.S. (2000), Low temperature sintering of La(Ca)CrO3 prepared by an autoignition process, Mater. Letts., 45, 162–166.CrossRefGoogle Scholar
  33. Chou, Y.S. and Stevenson, J.W. (2002), Thermal cycling and degradation mechanisms of compressive mica-based seals for SOFCs, J. of Power Sources, 112, 376–83.CrossRefGoogle Scholar
  34. Chou, Y.S., Stevenson, J.W. and Chick, L.A. (2002), Ultra-low leak rate of hybrid compressive mica-seals for SOFCs, J. Power Sources, 112, 130–136.CrossRefGoogle Scholar
  35. Chou, Y.S. and Stevenson, J.W. (2003), Phlogopite mica-based compressive seals for SOFCs: effect of mica thickness, J. Power Sources, 124, 473–78CrossRefGoogle Scholar
  36. Costamagna, P., Costa, P. and Antonucci, V. (1998), Micro-modeling of solid oxide fuel cell electrodes, Electrochem. Acta, 43, 375–394.CrossRefGoogle Scholar
  37. Choudhary, C.B., Maiti, H.S. and Subbarao, E.C. (1980), Solid Electrolytes and their Applications, Ed. E.C. Subbarao, Plenum Press, pp. 34–49.Google Scholar
  38. Dees, D.W., Claar, T.D., Easier, T.E., Fee, D.C. and Mrazek, F.C. (1987), Conductivity of porous Ni/ZrO2-Y2O3 cermets, J. Electrochem. Soc., 134, 2141–2146.CrossRefGoogle Scholar
  39. de Jonghe, L.C., Jacobson, C.P. and Visco, S.J. (2003), Supported electrolyte thin film synthesis of solid oxide fuel cells, Annu. Rev. Mater. Res., 33, 169–182.CrossRefGoogle Scholar
  40. de Souza, S., Visco, S.J. and De Jonghe, L.C. (1997), Thin-film solid oxide fuel cell with high performance at low temperature, Solid State Ionics, 98, 57–61.CrossRefGoogle Scholar
  41. Deng, X. and Petric, A. (1999), A solution to anode-electrolyte reaction in lanthanum gallate fuel cells, Processing and characterization of electrochemical materials and devices, pp. 87–94, Eds. P.N. Kumta, R. Manthiram, S.K. Sundaram and Y.M. Chiang, American Ceramic Society, Westerville, OH, USA.Google Scholar
  42. Divisek, J., Wilkenhöner, R. and Volfkovich, Y. (1999), Structure investigations of SOFC anode cermets — Part I: Porosity investigations. J. Appl. Electrochem. 29, 153–163.CrossRefGoogle Scholar
  43. Dokiya (2002), SOFC system and technology, Solid State Ionics, 152–153, 383–392.CrossRefGoogle Scholar
  44. Drennan, J., Zelizko, V, Hay, D., Ciacchi, F., Rajendran, T., Rajendran, S. and Badwal, S.P.S. (1997), Characterization, conductivity and mechanical properties of the oxygenion conductor, La0.9Sr0.1Ga0.8Mg0.2O3−x, J. Mater. Chem. 7, 79–83.CrossRefGoogle Scholar
  45. Duquette, J. and Petric, A. (2004), Silver wire seal design for planar solid oxide fuel cell stack, J. Power Sources, 137, 71–75.Google Scholar
  46. Duquette, J., Basu, R.N., Deng, X., Zhitomirsky, I. and Petric, A. (2005), Fabrication of cathode supported SOFC by colloidal processing, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 482–488. The Electrochemical Soc., Inc., Pennington, NJ, USA.Google Scholar
  47. Dyer, C.K. (1990), A novel thin film electrochemical device for energy conversion, Nature, 343, 547–548.CrossRefGoogle Scholar
  48. Eichler, K., Solow, G., Otschik, P. and Schaffrath, W. (1999), BAS (BaO-Al2O3-SiO2) glasses for high temperature applications, J. Euro. Ceram. Society., 19, 1101–1104.CrossRefGoogle Scholar
  49. Feng, M. and Goodenough, J.B. (1994), A superior oxide-ion electrolyte. Euro. J. Solid State Inorg. Chem., 31, 663–672.Google Scholar
  50. Fergus, J.W. (2004), Lanthanum chromite-based materials for solid oxide fuel cell interconnects, Solid State Ionics, 171, 1–15.CrossRefGoogle Scholar
  51. Fergus, J.W. (2005), Metallic interconnects for solid oxide fuel cells, Mater. Sci. & Engr., A397, 271–283.CrossRefGoogle Scholar
  52. Fergus, J.W. (2005), Sealants for solid oxide fuel cells, J. Power Sources, 147, 46–57.CrossRefGoogle Scholar
  53. Fleig, J., Kreuer, K.D. and Maier, J. (2003), Ceramic Fuel Cells, Handbook of Advanced Ceramics, Editor-in-Chief, S. Sømiya, Vol. II, pp. 59–105.Google Scholar
  54. Fleig, J. (2002), On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes, J. Power Sources, 105, 228–238.CrossRefGoogle Scholar
  55. Fu, Q., Tietz, F. and Stöver, D. (2005), Electrical conductivity and redox behaviour of yttrium-substituted SrTiO3: Dependence on preparation and processing procedures, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX). Eds. S.C. Singhal and J. Mizusaki, pp. 1417–1428. The Electrochemical Soc. Inc., Pennington, NJ, USA.Google Scholar
  56. Galasso, F.S. (1969), Structure, properties and preparation of perovskite-type compounds, Pergaman Press, Oxford.Google Scholar
  57. Gao, W. and Sammes, N.M. (1999), An Introduction to Electronic and ionic Materials, World Scientific, Singapore.Google Scholar
  58. Ghosh, D., Wang, G., Brule, R., Tang, E. and Huang, P. (1999), Performance of anode supported planar SOFC cells, Proc. of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Eds., S.C. Singhal and M. Dokiya, pp. 822–829. The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  59. Gödickemeier, M. and Gauckler, L.J. (1998), Engineering of solid oxide fuel cells with ceria-based electrolytes. J. Electrochem. Soc., 145, 414–421.CrossRefGoogle Scholar
  60. Goodenough, J.B. (2003), Oxide-ion electrolytes, Annu. Rev. Mater. Res., 33, 91–228.CrossRefGoogle Scholar
  61. Gorte, R.J., Park, S., Vohs, J.M. and Wang, C. (2000), Anodes for direct oxidation of dry hydrocarbons in a solid oxide fuel cell, Adv. Mater., 12, 1465–1469.CrossRefGoogle Scholar
  62. Gorte, R.J. and Vohs, J.M. (2003), Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis, 216, 477–486.CrossRefGoogle Scholar
  63. Haile, S.M., Fuel cell materials and components, Acta Materialia, 51, 5981–6000 (2003).CrossRefGoogle Scholar
  64. Hannappel, V.A.C., Shemet, V., Vinke, I.C. and Quadakkers, W.J. (2005), A novel method to evaluate the suitability of glass sealant-alloy combinations under SOFC stack conditions, J. Power Sources., 141, 102–107.CrossRefGoogle Scholar
  65. Hannappel, V.A.C., Shemet, V., Gross, S.M., Koppitz, TH., Zahid, M. and Quadakkers, W.J. (2005), Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions, J. Power Sources., Available online on 5th April.Google Scholar
  66. Hibino, T., Ushiki, K. and Kuwahara, Y. (1996), New concept of simplifying SOFC system, Solid State Ionics, 91, 69–74.CrossRefGoogle Scholar
  67. Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J., Yoshida, S. and Sano, M. (2000), A low-operating temperature solid oxide fuel cell in hydrogen-air mixtures, Science, 288, 2031–2033.CrossRefGoogle Scholar
  68. Hibino, T., Hasahimoto, A., Yano, M., Sizuki, M., Yoshida, S. and Sano, S. (2002), High performance anodes for SOFCs operating in methane-air mixture at reduced tempertures, J. Electrochem. Soc. 149, A133–A136.CrossRefGoogle Scholar
  69. Higgins, S., Sammes, N. and Smirnova, A. (2005), Proton-conductive electrolyte materials for protonic ceramic fuel cells (PCFCs), Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 2, pp. 1149–1155. The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  70. Hilpert, K., Quadakkers, W.J. and Singheiser, L. (2003), Interconnects, Handbook of Fuel Cells: Fundamentals, Technology and Applications, Eds. W. Vielstich, H.A. Gasteiger and A. Lamm. Vol. 4: Fuel Cell Technology and Applications, pp. 1037–54.Google Scholar
  71. Herbstritt, D., Warga, C., Weber, A. and Ivers-Tiffee (2001), Long-term stability of SOFC with Sc-doped zirconia electrolyte, Proc. Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), Eds. H. Yokokawa and S.C. Singhal, pp. 349–357, The Electrochemical Soc., Pennington, NJ, USA.Google Scholar
  72. Horita, T., Xiong, Y., Yamaji, K., Sakai, N. and Yokokawa, H. (2002), Chracterization of Fe-Cr alloys for reduced operation temperature SOFCs, Fuel Cells, 2, 189–194.CrossRefGoogle Scholar
  73. Horvat, M., Samardzija, Z., Hole, J. and Bernik, S. (1999), Subsolids phase equilibria in the La2O3-Ga2O3-CeO2 system, J. Mater. Res., 14, 4460–4462.Google Scholar
  74. Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y. and Prinz, F. (2005), MEMS fabrication and performances of nano-thin solid oxide fuel cell, Extended abstract, Electrochemical Society 208th Meeting, October 16–21, Los Angeles, California.Google Scholar
  75. Huang, K., Feng, M. and Goodenough, J.B. and Milliken, C. (1997), Electrode performance test on single ceramic fuel cells using electrolyte Sr-and Mg-doped LaGaO3, J. Eletrochem. Soc., 144, 3620–3624.CrossRefGoogle Scholar
  76. Huang, K., Feng, M. and Goodenough, J.B. (1998), Synthesis and electrical properties of dense Ce0.9Cd0.1O1.95 ceramics. J. Am. Ceram. Soc., 81, 357–362.Google Scholar
  77. Huang, K., Wan, J-W and Goodenough, J.B. (2001), Increasing power density of LSGM-based solid oxide fuel cells using new anode materials, J. Electrochem. Soc., 148, A788–A794.CrossRefGoogle Scholar
  78. Huang, P. and Petric, A. (1996), Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium, J. Electrochem. Soc., 143, 1644–1648.CrossRefGoogle Scholar
  79. Hui, S. and Petric, A. (2002), Electrical conductivity of yttria doped SrTiO3: Influence of transition metal additives, Mater. Res. Bull., 37, 1215–1231.CrossRefGoogle Scholar
  80. Hui, S. and Petric, A. (2002), Electrical properties of yttrium-doped strontium titanate under reducing condition, J. Electrochem. Soc., 149, J1–J10.CrossRefGoogle Scholar
  81. Isenberg, A.O. (1981), Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures, Solid State Ionics, 3/4, 431–437.CrossRefGoogle Scholar
  82. Ishihara, T., Matsuda, H. and Takita, Y. (1994), Doped LaGaO3 perovskite-type oxide as a new oxide ion conductor, J. Am. Chem. Soc. 116, 3801–3803.CrossRefGoogle Scholar
  83. Ishihara, T., Furutani, H., Honda, M., Yamada, T., Shibayama, T., Akbay, T., Sakai, N., Yokokawa, H. and Takita, Y. (1999), Improved oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 by doping Co, Chem. Mater., 11, 2081–2088.CrossRefGoogle Scholar
  84. Ishihara, T., Sato, K. and Takita, Y. (1996), Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells, J. Am. Ceram. Soc., 79, 913–919.CrossRefGoogle Scholar
  85. Ishihara, T., Novel electrolytes operating at 400-600°C (2003), Handbook of Fuel Cells — Fundamentals, Technology and Applications, Edited by W. Vielstich, H.A. Gasteiger and A. Lamm, Volume 4: Fuel Cell Technology and Applications, pp. 1109–1122, John Wiley & Sons Ltd.Google Scholar
  86. Ishiahara, T., Sammes, N.M. and Yamamoto, O. (2003), Electrolytes, in: High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Eds. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 83–117.Google Scholar
  87. Iwahara, H., Uchida, H. and Tanaka, S. (1983), High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells, Solid State Ionics, 9–10, 1021–1025.CrossRefGoogle Scholar
  88. Iwahara, H., Uchida, H., Ono, K. and Ogaki, K. (1988), Proton conduction in sintered oxides based on BaCeO3, J. Electrochem. Soc., 135, 529–533.CrossRefGoogle Scholar
  89. Jiang, S.P., Christiansen, L., Hugan, B. and Foger, K. (2001), Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3, J. Mater. Sci., 20, 695–97.Google Scholar
  90. Jiang, Y. and Virkar, A.V. (2001), A high performance, anode-supported solid oxide fuel cell operating on direct alcohol, J. Electrochem. Soc., 148, A706–A709.CrossRefGoogle Scholar
  91. Jiang, Y. and Virkar, A.V. (2003), Fuel composition and diluent Effect on gas transport and performance of anode-supported SOFCs, J. Electrochem. Soc., 150, A942–A951.CrossRefGoogle Scholar
  92. Jørgensen, M.J., Holtappels, P. and Appel, C.C. (2000), Durability test of SOFC cathodes, J. Appl. Electrochem., 30, 411–418.CrossRefGoogle Scholar
  93. Joshi, A.V., Steppan, J.J., Taylor, D.M. and Elangovan, S. (2004), Solid electrolyte materials, devices, and applications, J. Electroceramics, 13, 619–625.CrossRefGoogle Scholar
  94. Kendall, K., Minh, N.Q. and Singhal, S.C. (2003), Cell and stack design, High Temperature Solid Oxide fuel Cells: Fundamentals, Design and Applications, Eds.: S.C. Singhal and K. Kendall, Elsevier, UK, p. 197–228.Google Scholar
  95. Kilner, J.A. (2005), Brian Steele’s contributions to solid state ionics, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 13–19. The Electrochemical Soc. Inc., Pennington, NJ, USA.Google Scholar
  96. Kim, J.-W, Virkar, A.V., Fung, K.-Z., Mehta, K. and Singhal, S.C. (1999), Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells, J. Electrochem. Soc. 146, 69–78.CrossRefGoogle Scholar
  97. Kramer, S. Spears, M. and Tuller, H.L. (1994), Conduction in titanate pyrochlores — role of dopants, Solid State Ionics, 72: 59–66.CrossRefGoogle Scholar
  98. Kreuer, K.D. (2003), Proton conducting oxides, Ann. Rev. Mater. Res., 33, 333–360.CrossRefGoogle Scholar
  99. Kuo, J.H., Anderson, H.U. and Sparlin, D.M. (1989), Oxidation reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure, J. Solid State Chem., 83, 52–60.CrossRefGoogle Scholar
  100. Kuo, J.H., Anderson, H.U. and Sparlin, D.M. (1990), Oxidation reduction behavior of undoped and Sr-doped LaMnO3 defect structure, electrical conductivity, and thermoelectric power, J. Solid State Chem., 87, 55–63.CrossRefGoogle Scholar
  101. Larsen, F.H. and James, P.F. (1998), Chemical stability of MgO/CaO/Cr2O3-Al2O3-B2O3-phosphate glasses in SOFC environment, J. Mater. Sci., 33, 2499–2507.CrossRefGoogle Scholar
  102. Larsen, P.H. (1999), Sealing Materials for Solid Oxide Fuel Cells, Ph.D. Thesis (Sheffield University, UK), Risø National Laboratory, Roskilde, Denmark.Google Scholar
  103. Ley, K.L., Krumplet, M., Kumar, R., Meiser, J.H. and Bloom, I. (1996), Glass-ceramic sealant for SOFC: part-I, physical properties, J. Mater. Res., 11, 1489–1493.CrossRefGoogle Scholar
  104. Lu, C., Worrell, W.L., Gorte, R.J. and Vohs, J.M. (2003), SOFCs for direct hydrocarbon fuels with samaria-doped ceria electrolyte, J. Electrochem. Soc., 150, A354–A358.CrossRefGoogle Scholar
  105. Liu, Y., Zhu, S. and Liu, M. (2004), Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition, Adv. Mater., 16, 256–260.CrossRefGoogle Scholar
  106. Ma, G., Shimura, T. and Iwahara, H. (1999), Simultaneous doping with La3+ and Y3+ for Ba2+-and Ce4+-sites in BaCeO3 and the ionic conduction, Solid State Ionics, 120, 51–60.CrossRefGoogle Scholar
  107. Majewski, P., Rozumek, M. and Aldinger, F. (2001), Phase diagram studies in the systems La2O3-SrO-MgO-Ga2O3 at 1350–1400°C in air with emphasis on Sr and Mg substituted LaGaO3, J. Alloys Compounds, 329, 253.CrossRefGoogle Scholar
  108. Magnone, E., Traversa, E. and Miyayama, M. (2005), Synthesis and characterization of strontium and iron-doped lanthanum cobaltite nanocrystaline powders for single chamber solid oxide fuel cells, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 1617–1626. The Electrochemical Soc. Inc., Pennington, NJ, USA.Google Scholar
  109. Marina, O.A., Canfield, N.L. and Stevenson, J.W. (2002), Thermal, electrical, and electrochemical properties of lanthanum-doped strontium titanate, Solid State Ionics, 149, 21–28.CrossRefGoogle Scholar
  110. McEvoy, A. (2003), Anodes, in: High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Eds. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 149–171.Google Scholar
  111. Menzler, N.H., Bram, M., Buchkremer, H.P. and Stöver, D. (2003), Development of a gastight sealing material for ceramic components, J. Euro. Ceram. Soc., 23, 445–454.CrossRefGoogle Scholar
  112. Menzler, N.H., Sebold, D., Zahid, M., Gross, S.M. and Koppitz, T. (2005), Interaction of metallic SOFC interconnect materials with glass-ceramic sealant in various atmospheres, J. of Power Sources., Available online.Google Scholar
  113. Meyer, M., Nicoloso, N. and Jaenisch, V. (1997), Percolation model for the anomalous conductivity of fluorite-related oxides, Phys. Rev. B, 56, 5961–66, 1997.CrossRefGoogle Scholar
  114. Minh, N.Q. and Takahashi, T. (1995), Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam.Google Scholar
  115. Minh, N.Q. (2004), Solid Oxide fuel cell technology — features and applications, Solid State Ionics, 174, 271–277.CrossRefGoogle Scholar
  116. Mogensen, M. and Skaarup, S. (1996), Kinetic and geometric aspects of solid oxide fuel cell electrodes, Solid State Ionics, 86–88, 1151–1160.CrossRefGoogle Scholar
  117. Mogensen, M., Sammes, N.M. and Tompsett, G.A. (2000), Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 129: 63–94.CrossRefGoogle Scholar
  118. Mogensen, M., Primdahl, S., Jørgensen, M.J. and Bagger, C. (2000), Composite Electrodes in Solid Oxide Fuel Cells and Similar Solid State Devices, J. Electroceramics, 5:2, 141–152.CrossRefGoogle Scholar
  119. Moos, R. and Härdtl, K.H. (1997), Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° to 1400°C, J. Am. Ceram. Soc., 80, 2549–2562.CrossRefGoogle Scholar
  120. Mori, M., Yamamoto, T., Itoh, H., Abe, T., Yamamoto, S., Takeda, Y. and Yamamoto, O. (1994), Electrical conductivity of alkaline earth metal (Mg, Ca, Sr) doped lanthanum chromites, First European Solid Oxide fuel Cells Forum, Ed. U. Bossel, pp. 465–473, Lucerne, Switzerland.Google Scholar
  121. Mori, M., Yamamoto, T., Itoh, H. and Watanabe, T. (1997), Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells, J. Mater. Sci., 32, 2423–2431.CrossRefGoogle Scholar
  122. Mori, M., Hiei, Y. and Yamamoto, T. (2001), Control of the thermal expansion of strontium-doped lanthanum chromite perovskites by B-site doping for high temperature solid oxide fuel cell separators, J. Am. Ceram. Soc., 84, 781–86.CrossRefGoogle Scholar
  123. Murray, E.P, Tsai, T. and Barnett, S.A. (1999), A direct-methane fuel cell with a ceria-based anode, Nature, 400, 649–651.CrossRefGoogle Scholar
  124. Nakayama, S. and Sakamoto, M. (2001), Ionic conductivities of apatite-type Lax(GeO4)6O1.5x−12 (x = 8−9.33) polycrystals, J. Mater. Sci. Letts., 20, 1627–1629.CrossRefGoogle Scholar
  125. Nakayama, S. and Sakamoto, M. (1998), Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Nd), J. Euro. Ceram. Soc., 18, 1413–1418.CrossRefGoogle Scholar
  126. Napporn, T.W., Savoie, S., Roberge, R., Jacques-Bedard, X. and Meunier, M. (2005), Single-chamber SOFC: comparing dry and humidified conditions, Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 1, pp 371–377. The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  127. Negishi, H., Sakai, N., Yamaji, K., Horita, T. and Yokokawa, H. (1999), Fabrication of small tubular SOFCs by electrophoretic deposition technique, Proc. of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Eds. S.C. Singhal and M. Dokiya, pp. 885–892, The Electrochemical Soc. Inc., Pennington, NJ, USA.Google Scholar
  128. Nguyen, T.L. and Dokiya (2000), Electrical conductivity, thermal expansion and reaction of (La, Sr)(Ca, Mg)O3 and (La, Sr)AlO3 system, Solid State Ionics, 132, 217–226.CrossRefGoogle Scholar
  129. Ogumi, Z., Ioroi, T., Uchimo, Y. and Tekehara, Z. (1995), Novel method for preparing nickel/cermet by a vapor-phase process, J. Am. Ceram. Soc., 78, 593–598.CrossRefGoogle Scholar
  130. Pal, U. and Singhal, S.C. (1990), Electrochemical vapor deposition of YSZ, J. Electrochem Soc., 137, 2937–41, 1990.CrossRefGoogle Scholar
  131. Perednis, D. and Gauckler L.J. (2004), Solid oxide fuel cells with electrolytes prepared via spray pyrolysis, Solid State Ionics, 166, 229–239.CrossRefGoogle Scholar
  132. Petric, A., Huang, P. and Tietz, F. (2000), Evaluation of La-Sr-Co-O perovskites for solid oxide fuel cells and gas separation membranes, Solid State Ionics, 135, 719–725.CrossRefGoogle Scholar
  133. Pratihar, S.K., Das Sharma, A., Basu, R.N. and Maiti, H.S. (2004), Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells, J. Power Sources, 129, 138–142.CrossRefGoogle Scholar
  134. Pratihar, S.K., Basu, R.N., Mazumder, S. and Maiti, H.S. (1999), Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method, Eds. S.C. Singhal and M. Dokiya, Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI). The Electrochemical Soc., Pennington, NJ, USA.Google Scholar
  135. Quadakkers, W.J., Piron-Abellan, J., Shemet, V. and Singheiser, L. (2003), Metallic interconnectors for SOFCs—a review, Materials at High Temperatures, 20, 115–127.Google Scholar
  136. Ralph, J.M. and Kilner, J.A. (1997), Grainboundary conductivity enhancement in ceria-gadolina solid solution, Proc. of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), Eds. U. Stimming, S.C. Singhal, H. Tawa and W. Lehnert, pp. 1021–1030, The Electrochemical Society, Pennington, NJ, USA.Google Scholar
  137. Ralph, J.M., Kilner, J.A. and Steele, B.C.H. (2000), Improving Gd-doped ceria electrolytes for low temperature SOFC, in New Materials for Batteries and Fuel Cells, Eds. D.H. Doughty, L.F. Nazar, M. Arakawa, H.P. Brack and K. Naoi, MRS Symposium Proc., Vol. 575, pp. 309–314.Google Scholar
  138. Ralph, J.M., Schoeler, A.C. and Krumpelt, M. (2001), Materials for lower temperature solid oxide fuel cells, J. Mater. Sci., 36, 1161–1172.CrossRefGoogle Scholar
  139. Randall, C.A., Van Tassel, J.V., Hitomi, A., Daga, A., Basu, R.N. and Lanagan, M. (2000), Electroceramic device opportunities with electrophoretic deposition, J. Mater. Education, 22, 131–145.Google Scholar
  140. Sakai, N., Yokokawa, H., Horita, T. and Yamaji, K. (2004), Lanthanum chromite-based interconnects as key materials for SOFC stack development, Int. J. Appl. Ceram. Technol., 1, 23–30.CrossRefGoogle Scholar
  141. Sammes, N.M., Tompsett, G.A., Näfe, H. and Aldinger, F. (1999), Bismuth based oxide electrolyte—structure and ionic conductivity, J. Euro. Ceram. Soc., 19, 1801–1826.CrossRefGoogle Scholar
  142. Sansom, J.E.H., Sermon, PA. and Slater, PR. (2005), Synthesis and conductivities of the apatite-type phases, La9.33Si6−x GexO26, La9BaSi6−xGexO26.5, and related titanium doped systems, Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 2, pp. 1156–1164, The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  143. Sarkar, P. Rho, H., Liu, M., Yamarte, L and Johanson, L. (2005), High power density tubular SOFC for portable applications, Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 2, pp. 411–418. The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  144. Sasaki, K., Wurth, J-P., Gschwend, R., Gödickemeier, M. and Gauckler, L.J. (1996), Microstructure-property relations of solid oxide fuel cell cathodes and current collectors—cathode polarization and ohmic resistance, J. Electrochem. Soc. 143, 530–543.CrossRefGoogle Scholar
  145. Shao, Z. and Haile, S.M. (2004), A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, 170–173.CrossRefGoogle Scholar
  146. Shima, D. and Haile, S.M. (1997), The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate, Solid State Ionics, 97, 443–455.CrossRefGoogle Scholar
  147. Sohn, S.B. and Choi, S.Y. (2004), Suitable glass-ceramic sealant for planar solid oxide fuel cells, J. Am. Ceram. Soc., 87, 254–60.CrossRefGoogle Scholar
  148. Sohn, S.B., Choi, S.Y., Kim, G.H., Song, H.S. and Kim, G.D. (2002), Stable sealing glasses for planar SOFC, J. Noncryst. Solid., 297, 103–12.CrossRefGoogle Scholar
  149. Simmer, S.P. and Stevenson, J.W. (2001), Compressive mica seals for SOFC applications, J. Power Sources., 102, 310–316.CrossRefGoogle Scholar
  150. Singhal, S.C. and Kendall, K. (2003) (Editors), High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Elsevier, UK.Google Scholar
  151. Skowron, A., Huang, P. and Petric, A., Structural study of La0.8Sr0.2Ga0.85Mn0.15O2.825 (1999), J. Solid State Chem., 143, 202–209.Google Scholar
  152. Slater, P.R., Irvine, J.T.S. Irvine, Ishihara, T. and Takita, Y. (1998), The structure of the solid oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 by powder neutron diffraction, Solid State Ionics, 107, 319–323.CrossRefGoogle Scholar
  153. Steele, B.C.H. (1993), Materials for electrochemical energy conversion and storage systems, Ceramic International, 19, 269–277.CrossRefGoogle Scholar
  154. Steele, B.C.H. (1994), State-of-the-Art SOFC Ceramic Materials, in Proceedings of the 1st European SOFC Forum, Ed. U. Bossel, Switzerland, 1994, pp. 375–397.Google Scholar
  155. Steele, B.C.H. (2000), Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, 129: 95–110.CrossRefGoogle Scholar
  156. Stöver, D., Diekmann, U., Flesch, U., Kabs, H., Quadakkers, W.J., Tietz, F. and Vinke, I.C. (1999), Proc. of the sixth international symposium on solid oxide fuel cells (SOFC-VI), Eds., S.C. Singhal and M. Dokiya, pp. 812–821. The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  157. Stöver, D., Buchkremer, H.P. and Huijsmans, J.P.P. (2003), MEA/cell preparation methods: Europe/USA, Handbook of Fuel Cells—Fundamentals, Technology and Applications, Ed. W. Vielstich, H. A. Gasteiger and A. Lamm, Volume 4: Fuel Cell Technology and Applications, pp. 1015–1031. John Wiley & Sons.Google Scholar
  158. Strickler, D.W. and Carlson, W.G. (1964), Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2, J. Am. Ceram. Soc., 47, 122–127.CrossRefGoogle Scholar
  159. Subbarao, E.C. and Maiti, H.S (1984), Solid electrolytes with oxygen ion conduction, Solid State Ionics, 11, 317.CrossRefGoogle Scholar
  160. Sunde, S. (2000), Simulations of composite electrodes in fuel cells, J. Electroceram., 5, 153–182.CrossRefGoogle Scholar
  161. Takahashi, T., Esaka, T. and Iwahara, H. (1977), Conduction in bismuth (III) oxide-based oxide ion conductors under low oxygen pressure. I. Current blackening of the bismuth (III) oxide-yttrium oxide electrolyte, J. Appl. Electrochem., 7, 299–302.CrossRefGoogle Scholar
  162. Taniguchi, S., Kadowaki, M., Yasuo, T., Akiyama, Y., Miyake, Y. and Nishio, K. (2000), Improvement of thermal cycling characteristics of a planar-type solid oxide fuel cell by using ceramic fibre as sealing material, J. Power Sources, 90, 163–69.CrossRefGoogle Scholar
  163. Tanner, C.W., Fung, K.Z. and Virkar, A.V. (1997), The effect of porous composite electrode structure on solid oxide fuel cell performance, J. Electrochem. Soc., 144, 21–30.CrossRefGoogle Scholar
  164. Tao, S.W., Poulsen, F.W., Meng, G.Y and Sorensen, O.T. (2000), High temperature stability study of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3−x, J. Mater. Chem., 10, 1829–1833.CrossRefGoogle Scholar
  165. Teller, O., Meulenberg, W.A., Tietz, F., Wessel, E. and Quadakkers, W.J. (2001), Improved material combinations for stacking of solid oxide fuel cells, Proc. of the Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), Eds. H. Yokokawa and S.C. Singhal, pp. 895–903, The Electrochemical Soc., Pennington, NJ, USA.Google Scholar
  166. Tietz, F., Buchkremer, H.P. and Stöver, D. (2002), Components manufacturing for solid oxide fuel cell, Solid State Ionics, 152–153, 373–381.CrossRefGoogle Scholar
  167. Tsai, T. and Barnett, S.A. (1997), Increased solid-oxide fuel cell power density using interfacial ceria layers, Solid State Ionics, 98, 191–196.CrossRefGoogle Scholar
  168. Tuller, H.L. (1997), Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: impact and control, Solid State Ionics, 94, 63–74.CrossRefGoogle Scholar
  169. van Doom, R.H.E., Bouwmeester, H.J.M., Burggraaf, A.J. (1998), Kinetic decomposition of La0.3Sr0.7CoO3-δ perovskite membranes during oxygen permeation, Solid State Ionics, 111, 263–272.CrossRefGoogle Scholar
  170. van Gool, W. (1965), The possible use of surface migration in fuel cells and heterogeneous catalysis, Philips Research Report, 20, 81–93.Google Scholar
  171. Veith, M., Mathur, S., Lecerf, N., Huch, V. and Decker, T. (2000), Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes, J. Sol-Gel Sci. Technol., 15, 145–158.CrossRefGoogle Scholar
  172. Verkerk, M.J. and Burggraff, A.J. (1981), High oxygen ion conduction in sintered oxides of the Bi2O3-DY2O3 system, J. Electrochem. Soc., 128: 75–82.CrossRefGoogle Scholar
  173. Wan J.-H., Yan, J.-Q. and Goodenough, J.B. (2005), LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability, J. Electrochem. Soc., 152, A1511–A1515.CrossRefGoogle Scholar
  174. Waschsman, E.D., Ball, G.R., Jiang, N. and Stevenson, D.A. (1992), Structural and defect studies in solid oxide electrolytes, Solid State Ionics, 52, 213–218.CrossRefGoogle Scholar
  175. Weber, A. and Ivers-Tiffée, E. (2004), Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, J. Power Sources, 127, 273–283.CrossRefGoogle Scholar
  176. Williams, M.C., Strakey, J.P. and Surdoval, W.A. (2005), U.S. DOE Solid Oxide Fuel Cells: Technical Advances, Proc. of the Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 1, pp 20–31, The Electrochemical Society Inc., Pennington, NJ, USA.Google Scholar
  177. Wolfenstine, J., Huang, P. and Petric, A. (1999), Creep behavior of doped lanthanum gallate versus cubic zirconia, Solid State Ionics, 118, 257.CrossRefGoogle Scholar
  178. Yahiro, H., Ohuchi, T., Eguchi, K. and Arai, H. (1988), Electrical properties and microstructure in the system ceria-alkaline earth oxide, J. Mater. Sci., 23, 1036–1041.CrossRefGoogle Scholar
  179. Yan, J., Matsumoto, H., Enoki, M. and Ishihara, T. (2005), High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3−δ/Ce0.8Sm0.2 O2−δ composite film, Electrochem. and Solid State Letts., 8, A389–A391.CrossRefGoogle Scholar
  180. Yamaji, K., Negishi, H., Horita, T., Sakai, N. and Yokokawa, H. (2000), Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics, 135, 389–396.CrossRefGoogle Scholar
  181. Yamamoto, O. (2000), Solid oxide fuel cells: fundamental aspects and prospects, Electrochemica Acta, 45, 2423–2435.CrossRefGoogle Scholar
  182. Yamamuru, Y., Kawasaki, S. and H. Sakai (1999), Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia, Solid State Ionics, 126, 181–89.CrossRefGoogle Scholar
  183. Yasuda, I., Matsuzaki, Y., Yamakawa, T. and Koyama, T. (2000), Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates, Solid State Ionics, 135, 381.CrossRefGoogle Scholar
  184. Yasuda, I. and Hikita, T. (1993), Oxygen potential profile and ionic leak current in LaCrO3-based interconnect materials, Proc. of the third international symposium of solid oxide fuel cells (SOFC-III). Eds. S.C. Singhal and H. Iwahara, pp. 354–363.Google Scholar
  185. Yokokawa, H. and Horita, T. (2003), in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Ed. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 119–147.Google Scholar
  186. Zacate, M.O., Minervini, L., Bradfield, D.J., Grimes, R.W. and Sickafus, K.E. (2000), Defect cluster formation in M2O3-doped cubic zirconia, Solid State Ionics, 128, 243–54.CrossRefGoogle Scholar
  187. Zheng, R., Wang, S.R., Nie, H.W and Wen, T.L. (2004), SiO2-CaO-B2O3-Al2O3 ceramic glaze as sealant for planar IT-SOFC, J. Power Sources, 128, 165–172CrossRefGoogle Scholar
  188. Zhu, W.Z. and Deevi, S.C. (2002), Development of interconnect materials for solid oxide fuel cells, Mater. Sci. & Eng., A348, 227–243.Google Scholar
  189. Zhu, W.Z. and Deevi, S.C. (2003), A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. & Eng., A362, 228–239.CrossRefGoogle Scholar
  190. Zhu, W.Z. and Deevi S.C. (2003), Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance, Materials Research Bulletin, 38, 957–972.CrossRefGoogle Scholar

Copyright information

© Anamaya Publishers, New Delhi, India 2007

Authors and Affiliations

  • Rajendra N. Basu
    • 1
  1. 1.Fuel Cell and Battery SectionCentral Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations