Skip to main content

Direct Conversion of Coal Derived Carbon in Fuel Cells

  • Chapter
Recent Trends in Fuel Cell Science and Technology

Abstract

A long-held dream of early energy science and technology has been a fuel cell that would directly convert coal char (if not raw coal) into electric power—bypassing the emission problems of combustion and the efficiency limitations of thermal cycles. Such a fuel cell would generate electric power from an electrochemical reaction similar to the combustion reaction of carbon:

$$ C + O_2 = CO_2 (\Delta H^0 _{298 K} = - 94.05 kcal/mole, E^0 = 1.02 {\text{V at }}750^\circ {\text{C}}) $$
(1)

As an example, the fuel cell (Fig. 1) might use carbon plates or particulates wetted with a molten alkali carbonate electrolyte, a melt saturated porous ceramic separator, and an air electrode catalyzed by lithiated NiO, such as used in the molten carbonate hydrogen fuel cell (Cherepy et al, 2005; Vutetakis, 1985; Weaver et al, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, Ritesh and Alan A. Kornhauser (2004) “Energy Balance for a Direct Carbon Molten Carbonate Fuel Cell,” Proceedings of the 2004 ASME Heat Transfer Fluids Engineering Summer Conference, Charlotte, NC, July 11–15 2004.

    Google Scholar 

  • Anthony, D. B., Howard, J. B., Hottel, H. B. and Meissner, H. P. (1975) Rapid devolatilization of pulverized coal (15th Symp. (Int.) Combustion, Combustion Institute, Pittsburgh, p. 1303).

    Google Scholar 

  • Au, S. F., Peelen, W. H. A., Hemmes, K. and Woudstra, N. (1999) “Fuel cells, the next step: energy and exergy analysis of partial oxidation, direct carbon fuel cell and internal direct-oxidation carbon fuel cell,” (Proc. 3rd International Fuel Cell Conference, Nagoya Congress Center November 30–Dec 3; co-organized by the New Energy and Industrial Technology Development Organization (NEDO) and Fuel Cell Development Center (FCDIC).

    Google Scholar 

  • Bale, C. W., Pelton, A. D. and Thompson, W. T. (1966) Facility for the analysis of Chemical Thermodynamics (FACT 2.1), Ecole Polytechnique de Montreal, July 1996.

    Google Scholar 

  • Berkovich, Adam, J. (2003) Low Severity Extraction of Coal for Production of Carbon Fuel for Direct Carbon Fuel Cells, DOE Direct Carbon Fuel Cell Workshop, NETL, Pittsburgh, PA; July 30; proceedings online, http://www.netl.doe.gov/.

    Google Scholar 

  • Bregoli, L. J. and Kunz, H. R. (1982) J. Electrochem. Soc., 129, p. 2711.

    Article  CAS  Google Scholar 

  • Cherepy, N. J., Krueger, R. Fiet, K. J. Jankowski, A. F. and Cooper, J. F. (2005) Direct conversion of carbon fuels in a molten carbonate fuel cell, J. Electrochem Soc. 152(1), A80.

    Article  CAS  Google Scholar 

  • Chuang, Steven S. C. (2004) Carbon Based Fuel Cell, Report to DOE/NETL (Manager Travis Shultz).

    Google Scholar 

  • Clark, Keith, John Langley, Shigeki Sasaharra, Mitsuru Inada, Toru Yamashita and Yukitoshi Kozai (2003) “Ultra Clean Coal as a Gas Turbine Fuel: A Report on the Collaborative Study to Evaluate the Production and Utilisation of UCC as a Direct Fired Fuel in Gas Turbine Combined Cycle Power Plants”.

    Google Scholar 

  • Cocks, F. H., Klenk, P.A. and Simmons, W. N, (2005) Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells, Presented at the University Coal Research Contractors Review Conference, June 7–8 2005, Pittsburgh, PA.

    Google Scholar 

  • Coleman, C. H. and White, R. E. (1996) J. Electrochem. Soc., 143, p. 1781–1783.

    Article  CAS  Google Scholar 

  • Cooper, J. F., Cherepy, N. Berry, G. Pasternak, A. Surles, T. and Meyer Steinberg (2001) Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity Proc. Global Warming Conference, PV 20-2000, The Electrochemical Society; see also paper No. 50, Fall Meeting of the Electrochemical Society, Phoenix AZ Oct. 2000.

    Google Scholar 

  • Cooper, John F. (1984) Aluminum-Air Power Cell Research and Development, UCRL-53536, December 1984.

    Google Scholar 

  • Cooper, John F. (2004a) Direct Conversion of Coal or Coal-derived Carbon in Fuel Cells, Paper Fuel Cell 2004-2495, Proc. 2nd International Conference on Fuel Cell Science, Engineering and Technology, June 14–16, 2004, ASME, Rochester, New York, USA (Keynote address).

    Google Scholar 

  • Cooper, John F. (2004b) Electric power generation from coal chars and elemental carbon in fuel cells, extended abstract and visuals for Gordon Fuel Cell Conference presentation (July 2004), UCRL-ABS-205258.

    Google Scholar 

  • Cooper, John F., Roger Krueger and Nerine Cherepy (2002) Fuel cell apparatus and method thereof, US Patent 2002/010654 9 A1 August 8, 2002. See also Cooper et al., “Tilted Fuel Cell Apparatus”, US No. 6, 878, 479 B2, April 12, 2005.

    Google Scholar 

  • Crewe, George F., Uri Gatr and Vijay K. Dhir (1975) Decaking of bituminous coals by alkaline solutions, Fuel, 54, p. 20.

    Article  CAS  Google Scholar 

  • Doyon, Joel D., Thomas Gilbert, Geoffrey Davies and Lawrence Paetsch (1987) J. Electrochem. Soc., 134, p. 3035.

    Article  CAS  Google Scholar 

  • Dryden, I. G. C. (1957) Chemistry of coal and its relation to coal carbonization, J. Inst. Fuel, 30, 193.

    CAS  Google Scholar 

  • Frank, W. and Haupin, W. et al. (1985) Aluminum, in Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed., Vol. Al, Aluminum; VCH, Weinheim, FRG.

    Google Scholar 

  • Fujimoto, H., Tokumitsu, K., Mabuchi, A. and Kasuh, T. (1994) Carbon 32, 1249.

    Article  CAS  Google Scholar 

  • Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K. and Thonstad, J. (1982) Aluminum Electrolysis: Fundamentals of the Hall-Heroult Process Aluminum-Verlag, Dusseldorf.

    Google Scholar 

  • Gur, T. M. and Huggins, R. A. (1992) Direct electrochemical conversion of carbon to electrical energy in a high temperature fuel cell, J. Electrochem. Soc., 139, L-95.

    Article  CAS  Google Scholar 

  • Haber, F. and Bruner, L. (1904) “Das Kohlenelement, eine Knallgaskette,” Z. Elektrochem, 10, 697.

    Article  Google Scholar 

  • Habermehl, Diethard, Fred Orywal, and Hans-Dieter Beyer (1981) Plastic Properties of coal. In: Chemistry of Coal Utilization, John Wiley, NY.

    Google Scholar 

  • Hauser, Victor Emerald (1964) A study of carbon anode polarization in fused carbonate fuel cells, Ph.D. Thesis, Oregon State University, June 1964.

    Google Scholar 

  • Hemmes, Kas (2003) Using the Full Exergetic Quality of Solid Fuels, DOE Direct Carbon Fuel Cell Workshop, ETL, Pittsburgh, PA; July 30; Proceedings online, http://www.netl.doe.gov/, 2003.

    Google Scholar 

  • Hemmes, Kas and Michel Cassir (2004) “A theoretical study of the carbon/carbonate/hydroxide (electro-) chemical system in a direct carbon fuel cell,” Paper FUELCELL 2004-2497, Proc. 2nd International Conference on Fuel Cell Science, Engineering and Technology, ASME, Rochester, NY June 2004.

    Google Scholar 

  • Howard, H. C. (1945) Direct Generation of Electricity from Coal and Gas (Fuel Cells), (Vol. II, Chapter 35 in Chemistry of Coal Utilization, ed. Lowry, John Wiley and Sons, New York.)

    Google Scholar 

  • Howard, Jack B. (1981) Fundamentals of Coal Pyrolysis and Hydropyrolysis In: Chemistry of Coal Utilization, Martin A. Elliott (ed.), John Wiley, NY.

    Google Scholar 

  • Ihara, Manabu; Keisuke Matsuda, Hikaru Sato, and Chiaki Yokoyama, (2003) Solid State Fuel Storage and Utilization through Reversible Carbon Deposition of a SOFC Anode, Paper 14th International Conference on Solid State Ionics, Monterey, USA, June 22–27, 2003.

    Google Scholar 

  • Jacques, W. W. (1896) Method of Converting Potential Energy of Carbon into Electrical Energy, US Patent No. 555,511, March 3, 1896.

    Google Scholar 

  • Jacques. W. W. (1896b) Harper’s Magazine 94, p. 114.

    Google Scholar 

  • Johnson, G. E. et al. (1975) Prepr. Am. Chem. Soc., Div. Fuel Chem. 20(3).

    Google Scholar 

  • Kinoshita, K. (1988) Carbon: Electrochemical and Physicochemical Properties, John Wiley, New York.

    Google Scholar 

  • Langley, John, March (2004) UCC Energy Pty Ltd., L14 213 Miller Street, North Sydney, NSW 20, Australia, Private Communication to J. F. Cooper.

    Google Scholar 

  • Larminie, James; and Andrew Dicks (2000) Fuel Cell Systems Explained, John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  • Liebhafsky, H. A. and Cairns, E. J. (1968) Fuel Cells and Fuel Batteries: A Guide to their Research and Development, John Wiley, New York.

    Google Scholar 

  • Nakagawa, N. and Ishida, M. (1988) Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis, Ind. Eng. Chem. Res., 27(7).

    Google Scholar 

  • Parekh, B. K. (2003) Beneficiation of Ultra Clean Coal: An Economical Approach for Producing Carbon for the Fuel Cell Application, DOE Direct Carbon Fuel Cell Workshop, NETL, Pittsburgh, PA; July 30; Proceedings online, http://www.netl.doe.gov/

    Google Scholar 

  • Patton, E. and Zacevic S. (2005) Assessment of Direct Carbon Fuels, EPRI, Palo Alto, CA: 2005. 1011496; prepared by, SARA, Inc., Cypress CA 90630.

    Google Scholar 

  • Peelen, W.H.A., Olivry M. and S. F. Au, J. D. (2000) Fehribach, and K. Hemmes, Electrochemical oxidation of carbon in a 62/38 mol% Li/K carbonate melt, Preprint, J. Appl. Electrochem, 30.

    Google Scholar 

  • Pesaventeo, Philip V. (2001) Carbon-Air Fuel Cell, US Patent 6,200,697 Bl, March 13.

    Google Scholar 

  • Steinberg, Meyer (2003) Future Gen—Tomorrow’s Clean Energy Interactive and Combined Economic Drivers, DOE Direct Carbon Fuel Cell Workshop, NETL, Pittsburgh, PA; July 30; proceedings online, http://www.netl.doe.gov/.

    Google Scholar 

  • Steinberg, Meyer, J. F. Cooper and Cherepy, N. (2002) “High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation,” Proc. American Institute for Chemical Engineers Spring Meeting 2002, New Orleans; March 10–14.

    Google Scholar 

  • Tamaru, Setsuro; and Minoru Kamada (1935) Brennstoffketten, deren Arbeitstemperataure Unterhalb 600°C Liegt, z. Elekrochem. Bd. 41, No (2).

    Google Scholar 

  • Thonstad, J. (1970) The electrode reaction on the C, CO2 electrode in cryolite-alumina Melts—I. Steady state Measurements, II: Impedance Measurements, Electrochemica Acta, 15, p. 1569.

    Article  CAS  Google Scholar 

  • United Technologies (1983) “Development of improved molten carbonate fuel cell technology,” Final Report, United Technologies, Inc., for Electric Power Research Institute, Palo Alto, CA; contract #RP1085-4, July 1983; as reproduced in Fuel Cell Handbook, 4th Edition (U.S. Department of energy, Office of Fossil Energy, Federal Energy Technology Center, Morgantown WV; DOE FETC-99/1076).

    Google Scholar 

  • Vutetakis, D. G., Skidmore, D. R. and Byker, H. J. (1987) J. Electrochem. Soc., 134(12) 3027.

    Article  CAS  Google Scholar 

  • Vutetakis, D. J. (1985) Electrochemical oxidation of carbonaceous materials dispersed in molten salt, Ph.D. Dissertation, Ohio State University, Columbus OH.

    Google Scholar 

  • Weaver, R. D. Leach, S. C. and Nanis, L. (1981) Electrolyte Management for the Coal Air Fuel Cell, Proc. 16th Intersoc. En. Conv. Eng. Conf., ASME. NY; Paper No. 891344, p. 717.

    Google Scholar 

  • Weaver, Robert D., Steven C. Leach, Arthur E. Bayce and Leonard Nanis (1979) Direct Electrochemical Generation of Electricity from Coal, Report May 16, 1977–Feb. 15, 1979; SRI, International, Menlo Park, CA 94025; SAN-0115/105-1.

    Google Scholar 

  • Weaver, R. D., Laura Tietz and Daniel Cubicciotti (1975) Direct Use of Coal in a Fuel Cell: Feasibility Investigation, EPA-650/2-75-040, June.

    Google Scholar 

  • Yasumuro, Motoharu (2004) Development of Hyper Coal (ash-free coal) Production Technology, Report, Environment Technology Development Department of NEDO (New Energy and Industrial Technology Development Organization) MUZA KAWASAKI, 20F, 1310 Omiya-cho, Saiwai-ku, Kawasaki-shi, Kanagawa, 212-8554 Japan.

    Google Scholar 

  • Zecevic, Strahinja, Edward M. Patton and Parviz Parhami (2004) Direct carbon fuel cell with molten hydroxide electrolyte, Proc. 2nd International Conference on Fuel Cell Science, Engineering and Technology, June 14–16, 2004, ASME, Rochester New York, USA.

    Google Scholar 

  • Zondlo, John; Peter Stansberry, Alfred Stiller and Elliot Kennel (2003) Coal Processing via Solvent Extraction, DOE Direct Carbon Fuel Cell Workshop, NETL, Pittsburgh, PA; July 30; Proceedings online, http://www.netl.doe.gov/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Anamaya Publishers, New Delhi, India

About this chapter

Cite this chapter

Cooper, J.F. (2007). Direct Conversion of Coal Derived Carbon in Fuel Cells. In: Basu, S. (eds) Recent Trends in Fuel Cell Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68815-2_10

Download citation

Publish with us

Policies and ethics