We breathe to live, but the air we breathe carries many potentially harmful agents. To protect us against these constant challenges, our lungs have defenses that are remarkably effective, biologically complex, and scientifically fascinating. It is not hyperbole to say that the pathogenesis of most lung disease begins with a breach of these defenses. This chapter surveys these normal lung defense systems. Just as this text assumes familiarity with general pathology, we also assume knowledge of basic immunology. This chapter emphasizes the lung’s variations on themes of innate and adaptive immunity, and discusses the special role of granulomatous inflammation in lung defenses.


Mast Cell Respiratory Syncytial Virus Alveolar Macrophage Respir Crit Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McClellan R. Particle interactions in the respiratory tract. In: P Gehr, J Heyder, eds. Particle-lung interactions. New York: Marcel Dekker, 2000:3–66.Google Scholar
  2. 2.
    Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004;4:144–154.PubMedGoogle Scholar
  3. 3.
    Gleeson K, Eggli DF, Maxwell, SL. Quantitative aspiration during sleep in normal subjects. Chest 1997;111:1266–1272.PubMedGoogle Scholar
  4. 4.
    Sessa R, Di PM, Schiavoni G, et al. Microbiological indoor air quality in healthy buildings. New Microbiol 2002;25:51–56.PubMedGoogle Scholar
  5. 5.
    Riley RL. Aerial dissemination of pulmonary tuberculosis. Am Rev Tuberc 1957;76:931–941.PubMedGoogle Scholar
  6. 6.
    Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspect 2004;112:6–8.PubMedGoogle Scholar
  7. 7.
    Stone R. Air pollution. Counting the cost of London’s killer smog. Science 2002;298:2106–2107.PubMedGoogle Scholar
  8. 8.
    Nel A. Atmosphere. Air pollution-related illness: effects of particles. Science 2005;308:804–806.PubMedGoogle Scholar
  9. 9.
    Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 2001;109(suppl 4):523–527.PubMedGoogle Scholar
  10. 10.
    Bernstein JA, Alexis N, Barnes C, et al. Health effects of air pollution. J Allergy Clin Immunol 2004;114:1116–1123.PubMedGoogle Scholar
  11. 11.
    Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 2003;35:327–340.PubMedGoogle Scholar
  12. 12.
    Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001;74:1–8.PubMedGoogle Scholar
  13. 13.
    Dockery DW, Pope CA 3rd, Xu X, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993;329:1753–1759.PubMedGoogle Scholar
  14. 14.
    Dockery DW, Pope CA 3rd. Acute respiratory effects of particulate air pollution. Annu Rev Public Health 1994;15:107–132.PubMedGoogle Scholar
  15. 15.
    U.S. Environmental Protection Agency. The ozone report: measuring progress through 2003. Research Triangle Park, NC: EPA, 2004.Google Scholar
  16. 16.
    Last JA, Sun WM, Witschi H. Ozone, NO, and NO2: oxidant air pollutants and more. Environ Health Perspect 1994;102(suppl 10):179–184.PubMedGoogle Scholar
  17. 17.
    American Thoracic Society. Health effects of outdoor air pollution. Am J Respir Crit Care Med 1996;153:3–50.Google Scholar
  18. 18.
    Reynolds SM, Mackenzie AJ, Spina D, Page CP. The pharmacology of cough. Trends Pharmacol Sci 2004;25:569–576.PubMedGoogle Scholar
  19. 19.
    Marik PE, Kaplan D. Aspiration pneumonia and dysphagia in the elderly. Chest 2003;124:328–336.PubMedGoogle Scholar
  20. 20.
    Reynolds HY. Defense mechanisms against infections. Curr Opin Pulm Med 1999;5:136–142.PubMedGoogle Scholar
  21. 21.
    Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 2002;109:571–577.PubMedGoogle Scholar
  22. 22.
    Ganz T. Antimicrobial polypeptides. J Leukoc Biol 2004;75:34–38.PubMedGoogle Scholar
  23. 23.
    Markart P, Korfhagen TR, Weaver TE, Akinbi HT. Mouse lysozyme M is important in pulmonary host defense against Klebsiella pneumoniae infection. Am J Respir Crit Care Med 2004;169:454–458.PubMedGoogle Scholar
  24. 24.
    Singh PK, Tack BF, McCray PB Jr, Welsh MJ. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 2000;279:L799–805.PubMedGoogle Scholar
  25. 25.
    Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003;3:710–720.PubMedGoogle Scholar
  26. 26.
    Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75:39–48.PubMedGoogle Scholar
  27. 27.
    Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 2004;23:327–333.PubMedGoogle Scholar
  28. 28.
    Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM. Beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 2002;70:3068–3072.PubMedGoogle Scholar
  29. 29.
    Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999;103:1113–1117.PubMedGoogle Scholar
  30. 30.
    Hickling TP, Clark H, Malhotra R, Sim RB. Collectins and their role in lung immunity. J Leukoc Biol 2004;75:27–33.PubMedGoogle Scholar
  31. 31.
    Wu H, Kuzmenko A, Wan S, et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J Clin Invest 2003;111:1589–1602.PubMedGoogle Scholar
  32. 32.
    LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen TR. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 1998;19:700–708.PubMedGoogle Scholar
  33. 33.
    LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA, Korfhagen TR. Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 1997;158:4336–4340.PubMedGoogle Scholar
  34. 34.
    LeVine AM, Hartshorn K, Elliott J, Whitsett J, Korfhagen T. Absence of SP-A modulates innate and adaptive defense responses to pulmonary influenza infection. Am J Physiol Lung Cell Mol Physiol 2002;282:L563–572.PubMedGoogle Scholar
  35. 35.
    LeVine AM, Whitsett JA, Hartshorn KL, Crouch EC, Korfhagen TR. Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J Immunol 2001;167:5868–5873.PubMedGoogle Scholar
  36. 36.
    LeVine AM, Whitsett JA, Gwozdz JA, et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J Immunol 2000;165:3934–3940.PubMedGoogle Scholar
  37. 37.
    Wright JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 2005;5:58–68.PubMedGoogle Scholar
  38. 38.
    Gross GN, Rehm SR, Pierce AK. The effect of complement depletion on lung clearance of bacteria. J Clin Invest 1978;62:373–378.PubMedGoogle Scholar
  39. 39.
    Hopken UE, Lu B, Gerard NP, Gerard C. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 1996;383:86–89.PubMedGoogle Scholar
  40. 40.
    Mueller-Ortiz SL, Drouin SM, Wetsel RA. The alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 2004;72:2899–2906.PubMedGoogle Scholar
  41. 41.
    Jackson LA, Neuzil KM, Yu O, et al. Effectiveness of pneumococcal polysaccharide vaccine in older adults. N Engl J Med 2003;348:1747–1755.PubMedGoogle Scholar
  42. 42.
    Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J Clin Immunol 2001;21:303–309.PubMedGoogle Scholar
  43. 43.
    Pryor WA, Squadrito GL, Friedman M. A new mechanism for the toxicity of ozone. Toxicol Lett 1995;82–83:287–293.PubMedGoogle Scholar
  44. 44.
    Postlethwait EM, Langford SD, Bidani A. Reactive absorption of nitrogen dioxide by pulmonary epithelial lining fluid. J Appl Physiol 1990;69:523–531.PubMedGoogle Scholar
  45. 45.
    Cross CE, van der Vliet A, O’Neill CA, Louie S, Halliwell B. Oxidants, antioxidants, and respiratory tract lining fluids. Environ Health Perspect 1994;102(suppl 10):185–191.PubMedGoogle Scholar
  46. 46.
    Comhair SA, Erzurum SC. Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 2002;283:L246–255.PubMedGoogle Scholar
  47. 47.
    Frampton MW, Morrow PE, Torres A, Cox C, Voter KZ, Utell MJ. Ozone responsiveness in smokers and non-smokers. Am J Respir Crit Care Med 1997;155:116–121.PubMedGoogle Scholar
  48. 48.
    MacNee W Oxidants/antioxidants and COPD. Chest 2000;117:303S–317S.PubMedGoogle Scholar
  49. 49.
    Norwood J Jr, Ledbetter AD, Doerfler DL, Hatch GE. Residual oil fly ash inhalation in guinea pigs: influence of absorbate and glutathione depletion. Toxicol Sci 2001;61:144–153.PubMedGoogle Scholar
  50. 50.
    Kodavanti UP, Costa DL, Richards J, Crissman KM, Slade R, Hatch GE. Antioxidants in bronchoalveolar lavage fluid cells isolated from ozone—exposed normal and ascorbatedeficient guinea pigs. Exp Lung Res 1996;22:435–448.PubMedGoogle Scholar
  51. 51.
    Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995;92:6264–6268.PubMedGoogle Scholar
  52. 52.
    Folz RJ, Abushamaa AM, Suliman HB. Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J Clin Invest 1999;103:1055–1066.PubMedGoogle Scholar
  53. 53.
    Ho YS. Transgenic and knockout models for studying the role of lung antioxidant enzymes in defense against hyperoxia. Am J Respir Crit Care Med 2002;166:S51–56.PubMedGoogle Scholar
  54. 54.
    Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO. Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis 1983;128:S42–46.PubMedGoogle Scholar
  55. 55.
    Reynolds HY. Immunologic system in the respiratory tract. Physiol Rev 1991;71:1117–1133.PubMedGoogle Scholar
  56. 56.
    van oud Alblas AB, van Furth R. Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med 1979;149:1504–1518.Google Scholar
  57. 57.
    Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW. Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 1976;192:1016–1018.PubMedGoogle Scholar
  58. 58.
    Green GM, Kass EH. The role of the alveolar macrophage in the clearance of bacteria from the lung. J Exp Med 1964;119:167–176.PubMedGoogle Scholar
  59. 59.
    Jonsson S, Musher, DM, Chapman A, Goree A, Lawrence EC. Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J Infect Dis 1985;152:4–13.PubMedGoogle Scholar
  60. 60.
    Dockrell DH, Marriott HM, Prince LR, et al. Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 2003;171:5380–5388.PubMedGoogle Scholar
  61. 61.
    Broug-Holub E, Toews GB, van Iwaarden JF, et al. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect Immun 1997;65:1139–1146.PubMedGoogle Scholar
  62. 62.
    Leemans JC, Juffermans NP, Florquin S, et al. Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 2001;166:4604–4611.PubMedGoogle Scholar
  63. 63.
    Shao X, Mednick A, Alvarez M, van Rooijen N, Casadevall A, Goldman DL. An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J Immunol 2005;175:3244–3251.PubMedGoogle Scholar
  64. 64.
    Janeway CA, Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.PubMedGoogle Scholar
  65. 65.
    Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005;23:901–944.PubMedGoogle Scholar
  66. 66.
    Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993;268:4569–4572.PubMedGoogle Scholar
  67. 67.
    Palecanda A, Kobzik L. Receptors for unopsonized particles: the role of alveolar macrophage scavenger receptors. Curr Mol Med 2001;1:589–595.PubMedGoogle Scholar
  68. 68.
    Herre J, Gordon S, Brown GD. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 2004;40:869–876.PubMedGoogle Scholar
  69. 69.
    Zhang J, Zhu J, Imrich A, Cushion M, Kinane TB, Koziel H. Pneumocystis activates human alveolar macrophage NF-kappaB signaling through mannose receptors. Infect Immun 2004;72:3147–3160.PubMedGoogle Scholar
  70. 70.
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499–511.PubMedGoogle Scholar
  71. 71.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135–145.PubMedGoogle Scholar
  72. 72.
    Swanson JA, Hoppe AD. The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 2004;76:1093–1103.PubMedGoogle Scholar
  73. 73.
    Stuart LM, Ezekowitz RA. Phagocytosis: elegant complexity. Immunity 2005;22:539–550.PubMedGoogle Scholar
  74. 74.
    Iles KE, Forman HJ. Macrophage signaling and respiratory burst. Immunol Res 2002;26:95–105.PubMedGoogle Scholar
  75. 75.
    Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 2000;97:8841–8848.PubMedGoogle Scholar
  76. 76.
    Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2004;2:820–832.PubMedGoogle Scholar
  77. 77.
    Kobzik L, Bredt DS, Lowenstein CJ, et al. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 1993;9:371–377.PubMedGoogle Scholar
  78. 78.
    van Straaten JF, Postma DS, Coers W, Noordhoek JA, Kauffman HF, Timens W. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase. Mod Pathol 1998;11:648–655.PubMedGoogle Scholar
  79. 79.
    Nicholson S, Bonecini-Almeida M da G, Lapa e Silva JR, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 1996;183:2293–2302.PubMedGoogle Scholar
  80. 80.
    Weinberg JB. Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med 1998;4:557–591.PubMedGoogle Scholar
  81. 81.
    Fang FC, Vazquez-Torres A. Nitric oxide production by human macrophages: there’s NO doubt about it. Am J Physiol Lung Cell Mol Physiol 2002;282:L941–943.PubMedGoogle Scholar
  82. 82.
    Peters-Golden M, Canetti C, Mancuso P, Coffey MJ. Leukotrienes: underappreciated mediators of innate immune responses. J Immunol 2005;174:589–594.PubMedGoogle Scholar
  83. 83.
    Zhang P, Summer WR, Bagby GJ, Nelson S. Innate immunity and pulmonary host defense. Immunol Rev 2000;173:39–51.PubMedGoogle Scholar
  84. 84.
    Pier GB. Role of the cystic fibrosis transmembrane conductance regulator in innate immunity to Pseudomonas aeruginosa infections. Proc Natl Acad Sci USA 2000;97:8822–8828.PubMedGoogle Scholar
  85. 85.
    Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev 2000;173:27–38.PubMedGoogle Scholar
  86. 86.
    Elias JA, Zheng T, Lee CG, et al. Transgenic modeling of interleukin-13 in the lung. Chest 2003;123:339S–345S.PubMedGoogle Scholar
  87. 87.
    van der Weyden L, Adams DJ, Bradley A. Tools for targeted manipulation of the mouse genome. Physiol Genomics 2002;11:133–164.PubMedGoogle Scholar
  88. 88.
    Sledz CA, Williams BR. RNA interference in biology and disease. Blood 2005;106:787–794.PubMedGoogle Scholar
  89. 89.
    Segal AW. How neutrophils kill microbes. Annu Rev Immunol 2005;23:197–223.PubMedGoogle Scholar
  90. 90.
    Rosenzweig SD, Holland SM. Phagocyte immunodeficiencies and their infections. J Allergy Clin Immunol 2004;113:620–626.PubMedGoogle Scholar
  91. 91.
    Abraham SN, Thankavel K, Malaviya R. Mast cells as modulators of host defense in the lung. Front Biosci 1997;2:d78–87.PubMedGoogle Scholar
  92. 92.
    Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005;6:135–142.PubMedGoogle Scholar
  93. 93.
    Marshall JS, Jawdat DM. Mast cells in innate immunity. J Allergy Clin Immunol 2004;114:21–27.PubMedGoogle Scholar
  94. 94.
    French AR, Yokoyama WM. Natural killer cells and viral infections. Curr Opin Immunol 2003;15:45–51.PubMedGoogle Scholar
  95. 95.
    Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annu Rev Immunol 2004;22:405–429.PubMedGoogle Scholar
  96. 96.
    Vermaelen K, Pauwels R. Pulmonary dendritic cells. Am J Respir Crit Care Med 2005;172:530–551.PubMedGoogle Scholar
  97. 97.
    Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol 2003;3:994–1003.PubMedGoogle Scholar
  98. 98.
    Tuomanen EI, Austrian R, Masure HR. Pathogenesis of pneumococcal infection. N Engl J Med 1995;332:1280–1284.PubMedGoogle Scholar
  99. 99.
    Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG. Effector CD4+ and CD8+T-cell mechanisms in the control of respiratory virus infections. Immunol Rev 1997;159:105–117.PubMedGoogle Scholar
  100. 100.
    Cox RJ, Brokstad KA, Ogra P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol 2004;59:1–15.PubMedGoogle Scholar
  101. 101.
    Openshaw PJ, Tregoning JS. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin Microbiol Rev 2005;18:541–555.PubMedGoogle Scholar
  102. 102.
    Buckley RH. Pulmonary complications of primary immunodeficiencies. Paediatr Respir Rev 2004;5(suppl A):S225–233.PubMedGoogle Scholar
  103. 103.
    Kotloff RM, Ahya VN, Crawford SW. Pulmonary complications of solid organ and hematopoietic stem cell transplantation. Am J Respir Crit Care Med 2004;170:22–48.PubMedGoogle Scholar
  104. 104.
    Boyton RJ. Infectious lung complications in patients with HIV/AIDS. Curr Opin Pulm Med 2005;11:203–207.PubMedGoogle Scholar
  105. 105.
    Whitney CG, Harper SA. Lower respiratory tract infections: prevention using vaccines. Infect Dis Clin North Am 2004;18:899–917.PubMedGoogle Scholar
  106. 106.
    Williams GT, Williams WJ. Granulomatous inflammation—a review. J Clin Pathol 1983;36:723–733.PubMedGoogle Scholar
  107. 107.
    Perez RL, Rivera-Marrero CA, Roman J. Pulmonary granulomatous inflammation: From sarcoidosis to tuberculosis. Semin Respir Infect 2003;18:23–32.PubMedGoogle Scholar
  108. 108.
    Mohr LC. Hypersensitivity pneumonitis. Curr Opin Pulm Med 2004;10:401–411.PubMedGoogle Scholar
  109. 109.
    Sawyer RT, Maier LA, Kittle LA, Newman LS. Chronic beryllium disease: a model interaction between innate and acquired immunity. Int Immunopharmacol 2002;2:249–261.PubMedGoogle Scholar
  110. 110.
    Vignery A. Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med 2005;202:337–340.PubMedGoogle Scholar
  111. 111.
    Saginario C, Sterling H, Beckers C, et al. MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol 1998;18:6213–6223.PubMedGoogle Scholar
  112. 112.
    Han X, Sterling H, Chen Y, et al. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 2000;275:37984–37992.PubMedGoogle Scholar
  113. 113.
    Yagi M, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 2005;202:345–351.PubMedGoogle Scholar
  114. 114.
    Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002;61(suppl 2):ii54–58.PubMedGoogle Scholar
  115. 115.
    Co DO, Hogan LH, Il-Kim S, Sandor M. T cell contributions to the different phases of granuloma formation. Immunol Lett 2004;92:135–142.PubMedGoogle Scholar
  116. 116.
    Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 2001;193:271–280.PubMedGoogle Scholar
  117. 117.
    Barnes PF, Bloch AB, Davidson PT, Snider DE, Jr. Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med 1991;324:1644–1650.PubMedGoogle Scholar
  118. 118.
    Ehrt S, Schnappinger D, Bekiranov S, et al. Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 2001;194:1123–1140.PubMedGoogle Scholar
  119. 119.
    Nathan CF, Prendergast TJ, Wiebe ME, et al. Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J Exp Med 1984;160:600–605.PubMedGoogle Scholar
  120. 120.
    Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996;335:1941–1949.PubMedGoogle Scholar
  121. 121.
    Turner OC, Basaraba RJ, Orme IM. Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect Immun 2003;71:864–871.PubMedGoogle Scholar
  122. 122.
    Opie E, Aronson J. Tubercle bacilli in latent tuberculosis lesions and in lung tissue without tuberculous lesions. Arch Pathol 1927;4:1–21.Google Scholar
  123. 123.
    Lukacs NW, Chensue SW, Strieter RM, Warmington K, Kunkel SL. Inflammatory granuloma formation is mediated by TNF-alpha-inducible intercellular adhesion mole-cule-1. J Immunol 1994;152:5883–5889.PubMedGoogle Scholar
  124. 124.
    Marshall BG, Wangoo A, Cook HT, Shaw RJ. Increased inflammatory cytokines and new collagen formation in cutaneous tuberculosis and sarcoidosis. Thorax 1996;51:1253–1261.PubMedGoogle Scholar
  125. 125.
    Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A, Rook GA. Lung remodeling in pulmonary tuberculosis. J Infect Dis 2005;192:1201–1209.PubMedGoogle Scholar
  126. 126.
    Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol 2000;164:2585–2591.PubMedGoogle Scholar
  127. 127.
    Rhoades ER, Ullrich HJ. How to establish a lasting relationship with your host: lessons learned from Mycobacterium spp. Immunol Cell Biol 2000;78:301–310.PubMedGoogle Scholar
  128. 128.
    Flynn JL, Chan J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 2003;15:450–455.PubMedGoogle Scholar
  129. 129.
    Zhang P, Bagby GJ, Happel KI, Summer WR, Nelson S. Pulmonary host defenses and alcohol. Front Biosci 2002;7:d1314–1330.PubMedGoogle Scholar
  130. 130.
    Drannik AG, Pouladi MA, Robbins CS, Goncharova SI, Kianpour S, Stampfli MR. Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2004;170:1164–1171.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Les Kobzik
    • 1
  1. 1.Department of Environmental HealthHarvard School of Public HealthBostonUSA

Personalised recommendations