Advertisement

Prediction of Heat Transfer During Food Chilling, Freezing, Thawing, and Distribution

  • Christian James
  • Laurence Ketteringham
  • Silvia Palpacelli
  • Stephen James
Part of the Integrating Safety and Environmental Knowledge Into Food Studies towards European Sustainable Development book series (ISEKI-Food, volume 4)

Food engineers need to know the amount of time it takes to freeze, chill, or thaw their products and how much energy is required for that process. They also need to know the effect of storage, transport, or display conditions on the product temperatures. Currently experience plays a large role in identifying the time and energy needed, especially in situations where the food products can change from one day to the next. A reliable mathematical model can be of considerable help in optimizing a process and investigating the consequences of design changes.

Keywords

Heat Transfer Heat Transfer Coefficient Computational Fluid Dynamic Freezing Time Food Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson B. A., Sun S., Erdogdu F., Singh R. P. (2004): Thawing and freezing of selected meat products in household refrigerators. International Journal of Refrigeration, 27:1, 63–72CrossRefGoogle Scholar
  2. ASHRAE (2001): Fundamentals. American Societyof Heating, Refrigeration and Air-Conditioning Engineers, Inc., Atlanta, GAGoogle Scholar
  3. Bakal A., Hayakawa K. I. (1973): Heat transfer during freezing and thawing of foods. In: Advances in Food Research (eds. C. O.Chichester, E. M.Mrak and G. F.Stewart), Academic, New York, Vol. 20, pp. 218–256Google Scholar
  4. Baleo J. N., Guyonnaud L., SolliecC. (1995): Numerical simulations of air flow distribution in a refrigerated display case air curtain. Proceedings of the 19th International congress of Refrigeration, Vol. 2, pp. 681–687Google Scholar
  5. Bailey C., Cox R.P. (1976): The chilling of beef carcasses. Proceeding of the Institute of Refrigeration, 72, 76–90Google Scholar
  6. Bailey C., James S. J., Kitchell A. G., Hudson W. R. (1974): Air-, water- and vacuum-thawing of frozen pork legs. Journal of the Science of Food and Agriculture, 25, 81–97CrossRefGoogle Scholar
  7. Basak T., Ayappa K. G. (2002): Role of length scales on microwave thawing dynamics in 2D cylinders. International Journal of Heat and Mass Transfer, 45, 4543–4559CrossRefGoogle Scholar
  8. Becker B. R., Fricke B. A. (2004): Heat transfer coefficients for forced-air cooling and freezing of selected foods. International Journal of Refrigeration, 27:5, 540–551CrossRefGoogle Scholar
  9. Bennahmias R., Gaboriau R., Moureh J.(1997): The insulating cover, a particular logistic means for thermo-sensitive foodstuffs. International Journal of Refrigeration, 20:5, 359–366CrossRefGoogle Scholar
  10. Brown T. (1997): Tempering times for boxed boneless beef. In: Engineering and Food at ICEF 7 Supplement, pp. 9–12Google Scholar
  11. Brown T., James S. J. (1992): Process design data for pork chilling. International Journal of Refrigeration, 15:5, 281–289CrossRefGoogle Scholar
  12. Brown T., James S. J. (2006): The effect of air temperature, velocity and block composition on the tempering time of frozen boneless beef blocks. Meat Science, 73:4, 545–552CrossRefGoogle Scholar
  13. Brown T., Evans J., James C., JamesS. J., Swain M. J. (2006): Thawing of cook-freeze catering packs. Journal of Food Engineering, 74:1, 70–77CrossRefGoogle Scholar
  14. BurfootD., JamesS. J.(1988): The effect of spatial variations of heat transfer coefficient on meat processing times. Journal of Food Engineering, 7, 41–61CrossRefGoogle Scholar
  15. Burfoot D., Hayden R., Badran R. (1989): Simulation of a pressure cook/water and vacuum cooled processing system. In: Process Engineering in the Food Industry: Developments and Opportunities (eds. R. W. Field, J. Howell), Elsevier Applied Science, London, pp. 27–41Google Scholar
  16. Campanone L. A., Salvadori V. O., Mascheroni R. H. (2005a): Food freezing with simultaneous surface dehydration: approximate prediction of weight loss during freezing and storage. International Journal of Heat and Mass Transfer, 48:6, 1195–1204CrossRefGoogle Scholar
  17. Campanone L. A., Salvadori V. O., Mascheroni R. H. (2005b): Food freezing with simultaneous surface dehydration: approximate prediction of freezing time. International Journal of Heat and Mass Transfer, 48:6, 1205–1213CrossRefGoogle Scholar
  18. Chamchong M., Data A. K. (1999a): Thawing of foods in a microwave oven: I. Effect of power levels and power cycling. Journal of Microwave Power and Electromagnetic Energy, 34, 9–21Google Scholar
  19. Chamchong M., Data A. K. (1999b): Thawing of foods in a microwave oven: II. Effect of load geometry and dielectric properties. Journal of Microwave Power and Electromagnetic Energy 34, 22–32Google Scholar
  20. Cleland A. C. (1990): Food refrigeration processes — Analysis, design and simulation. Elsevier Applied Science, London, England, 284 pGoogle Scholar
  21. Cortella G. (2002): CFD aided retail cabinets design. Computers and Electronics in Agriculture 34, 43–66CrossRefGoogle Scholar
  22. Creed P. G., James S. J. (1981): Predicting thawing times of frozen boneless beef blocks. Proceedings of the Institute of Refrigeration, 77, 355–358CrossRefGoogle Scholar
  23. Creed P. G., James S. J. (1984): The prediction of freezing and thawing times of mutton carcasses. Proceedings of the 30th European Meeting of Meat Research Workers, Bristol, 2.5 , pp. 59–60Google Scholar
  24. Creed P. G., James S. J. (1985): Heat transfer during the freezing of liver in a plate freezer. Journal of Food Science, 50, 285–288, 294Google Scholar
  25. Daudin J. D., van Gerwen R. J. M. (1996): Methods to Assess Chilling Kinetics in Industrial Chillers. New developments in Meat Refrigeration, IIR Antony, France, pp. 1.7–1.15Google Scholar
  26. Delgado A. E., Sun D. W. (2001): Heat and mass transfer models for predicting freezing processes — a review. Journal of Food Engineering, 47, 157–174CrossRefGoogle Scholar
  27. Dostal M., Petera K. (2004): Vacuum cooling of liquids: mathematical model. Journal of Food Engineering, 61:4, 533–539CrossRefGoogle Scholar
  28. Drumm B. M., Joseph R. L., Mckenna B. M. (1992): Line chilling of beef 1: the prediction of temperatures. Journal of Food Engineering, 16, 251–265CrossRefGoogle Scholar
  29. Dusinberre G. M. (1949): Numerical Analysis of Heat Flow (1st edn). McGraw-Hill, New YorkGoogle Scholar
  30. Earle R. L., Fleming K. A. (1967): Cooling and freezing of lamb and mutton carcasses: -1- cooling and freezing rates in legs. Food Technology, 21, 79–84Google Scholar
  31. Erdogdu F., Sarkar A., Singh R. P. (2005): Mathematical modelling of air-impingement cooling of finite slab shaped objects and effect of spatial variation of heat transfer coefficient. Journal of Food Engineering, 71:3, 287–294CrossRefGoogle Scholar
  32. Evans J., Russell S., James S. (1996): Chilling of recipe dish meals to meet cook-chill guidelines. International Journal of Refrigeration, 19, 79–86CrossRefGoogle Scholar
  33. Foster A. M., Barrett R., James S. J., Swain M. J. (2002): Measurement and prediction of air movement through doorways in refrigerated rooms. International Journal of Refrigeration, 25, 1102–1109CrossRefGoogle Scholar
  34. Fricke B. A., Becker B. R. (2006): Sensitivity of freezing time estimation methods to heat transfer coefficient error. Applied Thermal Engineering, 26:4, 350–362 Gigiel A. (1998): Modelling the thermal response of foods in refrigerated transport, Meeting of IIR Commission D1,D2/3 Cambridge, UK, International Institute of Refrigeration, ParisGoogle Scholar
  35. Gigiel A. J., Creed P. G. (1987) : Effect of air speed and carcass weight on the cooling rates and weight losses from goat carcasses. International Journal of Refrigeration, 10, 305–306CrossRefGoogle Scholar
  36. Harris M. B., Carson J. K., Willix J., Lovatt S. J. (2004): Local surface heat transfer coefficients on a model lamb carcass. Journal of Food Engineering, 61:3, 421–429CrossRefGoogle Scholar
  37. Hoang M. L., Verboven P., De Baerdemaeker J., Nicolai B. M. (2000): Analysis of the air flow in a cold store by means of computational fluid dynamics. International Journal of Refrigeration 23, 127–140CrossRefGoogle Scholar
  38. Hoke K., Houska M., Kyhos K., Landfeld A. (2002): Use of a computer program for parameter sensitivity studies during thawing of foods. Journal of Food Engineering, 52:3, 219–225CrossRefGoogle Scholar
  39. Hossain M. M., Cleland D. J., Cleland A. C. (1992): Prediction of freezing and thawing times for foods of regular multi-dimensional shape by using an analytically derived geometric factor. International Journal of Refrigeration, 15, 227–234CrossRefGoogle Scholar
  40. Houska M., Podloucky S., Zitny R., Gree R., Sestak J., Dostal M., Burfoot D. (1996): Mathematical model of the vacuum cooling of liquids. Journal of Food Engineering, 29:3–4, 339–348CrossRefGoogle Scholar
  41. Hu Z., Sun D. W. (2001): Effect of fluctuation in inlet airflow temperature on CFD simulation of air-blast chilling process. Journal of Food Engineering, 48, 311–316CrossRefGoogle Scholar
  42. Huan Z., He S., Ma Y. (2003): Numerical simulation and analysis for quick-frozen food processing. Journal of Food Engineering, 60:3, 267–273CrossRefGoogle Scholar
  43. Hung Y. C. (1990): Prediction of cooling and freezing times. Food Technology, 44:5, 137–144, 146, 148,153Google Scholar
  44. Jain D., IlyasS. M., Pathare P., Prasad S., Singh H.(2005): Development of mathematical model for cooling the fish with ice. Journal of Food Engineering, 71:3, 324–329CrossRefGoogle Scholar
  45. James S. J., Bailey C. (1979): The determination of the freezing time of boxed meat blocks. Proceedings of the Institute of Refrigeration, 75, 1–8Google Scholar
  46. James S. J., Bailey C. (1980): Air and vacuum thawing of unwrapped boneless meat blocks. Proceedings of The Institute of Refrigeration, 76, 44–51Google Scholar
  47. James S. J., Bailey C. (1982): Changes in the surface heat transfer coefficient during meat thawing. Proceedings of the 28th European Meeting of Meat Research Workers, Madrid, 1, 16 March, 160–163Google Scholar
  48. James S. J., Bailey C. (1990): Chilling of beef carcasses. Chilled foods – The state of the art, Elsevier Applied Science, London, England, Chapter 8, pp. 159–182Google Scholar
  49. James S. J., Schofield I. (1998): Developments in the prediction of meat carcass chilling. In: Advances in the Refrigeration System, Food Technologies and Cold Chain. Proceedings of meeting of IIF-IIR Commissions B2 and C2, with D1 and D2/3 , Sofia , BulgariaGoogle Scholar
  50. James S. J., Swain M. J. (1982): The effect of surface fat layers on the chilling time of meat. Proceedings of the 16th International Congress of Refrigeration, Paris, Vol. 2, 473–478Google Scholar
  51. James S. J., Creed P. G., Roberts T. A. (1977): Air thawing of beef quarters. Journal of the Science of Food and Agriculture, 28, 1109–1119CrossRefGoogle Scholar
  52. James C., Palpacelli S., James S. (2003): Optimisation of two-stage bacon tempering using mathematical modelling. In: Predictive Modelling in Foods — Conference Proceedings (eds. J. F. M. Van Impe, A. H. Geeraerd, I. Leguérinel, P. Mafart), Katholieke Universiteit Leuven/BioTeC, Belgium, ISBN 90-5682-400-7, pp. 277–279Google Scholar
  53. James C., Lejay I., Tortosa N., Aizpurua X., James S. J. (2005): The effect of salt concentration on the freezing point of meat simulants. International Journal of Refrigeration, 28, 933–939CrossRefGoogle Scholar
  54. Jowitt R., Escher F., Hallstrom B., Meffert H. F. T., Spiess W. E. L., VosG.(1983): Physical Properties of Foods. Applied Science, LondonGoogle Scholar
  55. Ketteringham L., James S. J. (1999): Immersion chilling of trays of cooked products. Journal of food Engineering, 40, 256–267CrossRefGoogle Scholar
  56. Krokida M. K., ZogzasN. P., MaroulisZ. B.(2002): Heat transfer coefficient in food processing: compilation of literature data. International Journal of Food Properties, 5:2, 435–450CrossRefGoogle Scholar
  57. Kuitche A., Daudin J. D., Letang G. (1996a): Modelling of temperature and weight loss kinetics during meat chilling for time-variable conditions using an analytical-based method.1. The model and its sensitivity to certain parameters. Journal of Food Engineering, 28:1, 55–84CrossRefGoogle Scholar
  58. Laguerre O., Flick D. (2004): Heat transfer by natural convection in domestic refrigerators. Journal of Food Engineering, 62:1, 79–88CrossRefGoogle Scholar
  59. Lan T. H., Gotham D. H. T., Collins M. W. (1996): A numerical simulation of the air flow and heat transfer in a refrigerated food display cabinet. Second European Thermal Sciences and 14th UIT National Heat Transfer Conference, pp. 1139–1146Google Scholar
  60. Landfeld A., Houska M. (2006): Prediction of heat and mass transfer during passage of the chicken through the chilling tunnel. Journal of Food Engineering, 72:1, 108–112CrossRefGoogle Scholar
  61. LeBlanc D. I., Kok R., Timbers G. E. (1990): Freezing of a parallelepiped food product. Part 2, Comparison of experimental and calculated results. International Journal of Refrigeration, 13, 379–392CrossRefGoogle Scholar
  62. Lind I.(1991): Mathematical modelling of the thawing process. Journal of Food Engineering, 14, 1–23CrossRefGoogle Scholar
  63. López-Leiva M., Hallström B. (2003): The original Plank equation and its use in the development of food freezing rate predictions. Journal of Food Engineering, 58, 267–275CrossRefGoogle Scholar
  64. Mariotti M., Rech G., Romagnoni P. (1995): Numerical study of air distribution in a refrigerated room. Proceedings of the 19th International Conference of Refrigeration, August 20–25, The Hague, The Netherlands, pp. 98–105Google Scholar
  65. Miles C. A., van Beek G., Veerkamp C. H. (1983): Calculation of thermophysical properties of foods. In: Physical Properties of Foods (eds. R. Jowitt, F. Escher, B. Hallstrom, H. F. Th. Meffert, W. E. L. Spiess, G. Vos), Applied Science, London, Chapter 16, pp. 269–312Google Scholar
  66. Mirade P. S., Kondjoyan A., Daudin J. D. (2002): Three-dimensional CFD calculations for designing large food chillers. Computers and Electronics in Agriculture, 34:1–3, 67–88CrossRefGoogle Scholar
  67. Moraga N. O., Barraza H. G. (2003): Predicting heat conduction during solidification of a food inside a freezer due to natural convection. Journal of Food Engineering, 56:1, 17–26CrossRefGoogle Scholar
  68. Navaz H. K., Faramarzi R., Gharib M., Dabiri D., Modaress D.(2002): The application of advanced methods in analyzing the performance of the air curtain in a refrigerated display case. Journal of Fluids Engineering — Trans ASME, 124:3, 756–764CrossRefGoogle Scholar
  69. Nicolai B. M., Verboven P., Scheerlinck N., Hoang M. L., Haddish N.(2001): Modelling of cooling and freezing operations. Rapid cooling of food, Meeting of IIR Commission C2 , Bristol , UK, Section 3, pp. 211–216Google Scholar
  70. Pham Q. T. (1985): A fast, unconditionally stable finite-difference method for heat conduction with phase change. International Journal of Heat Mass Transfer, 28, 2079–2084CrossRefGoogle Scholar
  71. Pham Q.T. (2001): Modelling thermal processes: cooling and freezing. In: Food Process Modelling (eds. L. M. M. Tijskens, M. L. A. T. M. Hertog, B. M. Nicolaï), Woodhead Publishing Limited, Cambridge, Chapter 15Google Scholar
  72. Pham Q. T. (2002): Calculation of processing time and heat load during food refrigeration. EcoLibrium: The Official Journal of AIRAH, July, 22–28Google Scholar
  73. PlankR. (1913): Die Gefrierdauer von Eisblöcken (Freezing times of ice blocks). Zeitschrift für die gesamte Kälte-Industrie, XX:6, 109–114Google Scholar
  74. Plank R.(1941): Beiträge zur Berechnung und Bewertung der Gefriergeschwindigkeit von Lebensmittel (Calculation and validation of freezing velocities in foods). Beihefte zur Zeitschrift für die gesamte, Kälte-Industrie, 3:10, 22Google Scholar
  75. Radford R. D., Herbert L. S., Lovett D. A. (1976): Chilling of meat — a mathematical model for heat and mass transfer. Towards an ideal refrigerated food chain, Meeting of IIR Commissions C2, D1, D2, D3, and E1, Melbourne, Australia, pp. 323–330Google Scholar
  76. Saad Z., Scott E. P. (1996): Estimation of temperature dependent thermal properties of basic food solutions during freezing Journal of Food Engineering, 28, 1–19CrossRefGoogle Scholar
  77. Said M. N. A., Shaw C. Y., Zhang J. S., Christianson L. (1995): Computation of room air distribution. ASHRAE Transactions, 101, 1065–1077Google Scholar
  78. Salvadori V. O., Mascheroni R. H. (2002): Analysis of impingement freezers performance. Journal of Food Engineering, 54:2, 133–140CrossRefGoogle Scholar
  79. Singh R.P., Heldman D.R. (1993): Introduction to Food Engineering (2nd edn). Clarendon, OxfordGoogle Scholar
  80. Stribling D., Tassou S. A., Marriot D. (1997): A two dimensional CFD model of a refrigerated display case. ASHRAE Transactions: Research, 103:1, 88–95Google Scholar
  81. StubbsD. M., PulkoS. H., WilkinsonA. J.(2004): Wrapping strategies for temperature control of chilled foodstuffs during transport. Transactions of Instrumental Measurement and Control 26:1, 69–80CrossRefGoogle Scholar
  82. Tanner D. J., Cleland A. C., Opara L. U. (2002a): A generalised mathematical modelling methodology for the design of horticultural food packages exposed to refrigerated conditions: Part 2. Heat transfer modelling and testing. International Journal of Refrigeration, 25:1, 43–53CrossRefGoogle Scholar
  83. Tanner D. J., Cleland A. C., Opara L. U., Robertson T. R. (2002b): A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: Part 1. Formulation. International Journal of Refrigeration-Revue, 25:1, 33–42CrossRefGoogle Scholar
  84. Tanner D. J., Cleland A. C., Robertson T. R. (2002c): A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: Part 3. Mass transfer modelling and testing. International Journal of Refrigeration, 25:1, 54–65CrossRefGoogle Scholar
  85. Trujillo F. J., Pham Q. T. (2003): Modelling the chilling of the leg, loin and shoulder of beef carcasses using an evolutionary method. International Journal of Refrigeration, 26:2, 224–231CrossRefGoogle Scholar
  86. Tso C. P., Yu S. C. M., Poh H. J., Jolly P. G. (2002): Experimental study on the heat and mass transfer characteristics in a refrigerated truck. International Journal of Refrigeration, 25, 340–350CrossRefGoogle Scholar
  87. Van Ort H., Van Gerwen R. J. M. (1995): Air flow optimisation in refrigerated cabinets. Proceedings of 19th International Congress of Refrigeration, pp. 446–453Google Scholar
  88. Wang L., Sun D. W. (2002a): Modelling vacuum cooling process of cooked meat--part 1: Analysis of vacuum cooling system. International Journal of Refrigeration, 25:7, 854–861CrossRefGoogle Scholar
  89. Wang L., Sun D. W. (2002b): Modelling vacuum cooling process of cooked meat – part 2: Mass and heat transfer of cooked meat under vacuum pressure. International Journal of Refrigeration, 25:7, 862–871CrossRefGoogle Scholar
  90. Wang L., Sun D. W. (2003): Recent developments in numerical modelling of heating and cooling processes in the food industry — a review. Trends in Food Science and Technology, 14, 408–423CrossRefGoogle Scholar
  91. Xia B., Sun D. W.( 2002): Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34, 5–24CrossRefGoogle Scholar
  92. Zogzas N. P., Krokida M. K., Michailidis P. A., Maroulis Z. B. (2002): Literature data of heat transfer coe fficients in food processing. International Journal of Food Properties, 5:2, 391–417CrossRefGoogle Scholar
  93. Zorrilla S. E., Rubiolo A. C. (2005a): Mathematical modelling for immersion chilling and freezing of foods: Part i: Model development. Journal of Food Engineering, 66:3, 329–338CrossRefGoogle Scholar
  94. Zorrilla S. E., Rubiolo A. C. (2005b): Mathematical modelling for immersion chilling and freezing of foods: Part ii: Model solution. Journal of Food Engineering, 66:3, 339–351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christian James
    • 1
  • Laurence Ketteringham
    • 1
  • Silvia Palpacelli
    • 1
  • Stephen James
    • 1
  1. 1.Food Refrigeration and Process Engineering Research CentreUniversity of Bristol, Churchill BuildingLangfordUnited Kingdom

Personalised recommendations