Phytoremediation of Metal-Contaminated Soil for Improving Food Safety

  • Stefan Shilev
  • Manuel Benlloch
  • R. Dios-Palomares
  • Enrique D. Sancho
Part of the Integrating Safety and Environmental Knowledge Into Food Studies towards European Sustainable Development book series (ISEKI-Food, volume 4)

The contamination of the environment is a serious problem which provokes great interest in our society and in the whole scientific community. The input of metals into soils has increased during the last few decades as a consequence of different human activities (storage of industrial and municipal wastes, burning of fuels, mining and wastewater treatments, functioning of non-ferrous-metal-producing smelters, etc.). Nowadays, this type of contamination is one of the most serious concerning the chronic toxic effect which it renders on human health and the environment. As a consequence of all these activities, a huge number of toxic metals and metalloids, such as Cu, Zn, Pb, Cd, Hg and As, among many others, have been accumulated in soils, reaching toxic values. Unfortunately, much contaminated land is still in use for crop production, despite the danger that the metal content poses.

In western Europe more than 1.4 million sites are polluted with heavy metals and metalloids (McGrath et al., 2001) . This type of contamination is a big problem, also for agricultural land. Remediation of heavy metal contaminated soils is difficult owing to the lack of possibilities to destroy heavy metal pollutants, while this objective for organic pollutants can be achieved by mineralization in most cases. Present technologies for soil restoration are difficult, too expensive, time-consuming and in many cases create an additional risk for people and produce secondary waste (Wenzel et al., 1999) . For that reason it is very important to develop efficient and cost-effective in situ technologies


Heavy Metal Arsenic Concentration Pseudomonas Fluorescens Indian Mustard Helianthus Annuus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, A.J.M., S.P. McGrath, R.D. Reeves, J.A.C. Smith. (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: N. Terry and G. Ba ñuelos (eds.), Phytoremediation of contaminated soils and waters, pp. 85 –107. Lewis Publishers, Boca Raton, FL.Google Scholar
  2. Baumann, A. (1885) Das Verhalten von Zinksatzen gegen Pflanzen und im Boden.Landwirtsch. Vers.-Statn, 31: 1 –53.Google Scholar
  3. Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D., Ensley, I.Raskin (1997) Enhanced accumulation of Pb by Indian mustard by soil-applied chelating agents.Environ. Sci. Technol., 31: 860 –886.CrossRefGoogle Scholar
  4. Brooks, R.R. (1998) General introduction.In: R.R. Brooks (ed.), Plants that hyperaccumulate heavy metals, pp. 1 –15. CAB International, Oxon, UK.Google Scholar
  5. Brooks, R.R., J. Lee, R.D. Reeves, T.Jaffre(1977) Detection of nickelferrous rocks by analysis of herbarium specimens of indicator plant.J. Geochem. Explor., 7: 49 –77.CrossRefGoogle Scholar
  6. Brooks, R.R., M.F. Chambers, L.J. Nicks, B.H. Robinson (1998) Phytomining.Trends Plant Sci. 9: 359 –362.CrossRefGoogle Scholar
  7. Cai, S., Y. Lin, H. Zhineng, Z. Xianzu, Y. Zhalou, X. Huidong, L. Yuanrong, J. Rongdi, Z. Wenhau, Z. Fangyuan (1990) Cadmium exposure and health effects among residents in an irrigation area with ore dressing wastewater.Sci. Total Environ., 90: 67 –73.CrossRefGoogle Scholar
  8. Chaney, R.L., Y.M. Li, J.S. Angle, A.J.M. Baker, R.D. Reeves, S.L. Brown,F.A. Homer, M. Malik, M. Chin (1999) Improving metal hyperaccumulators wild plants to develop commercial phy-toextraction systems: approaches and progress. In: N. Terry and G.S. Ba ñuelos (eds.), Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL.Google Scholar
  9. Cong, T., L.Q. Ma (2005) Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumualtorPteris vittataL.Environ. Pollut., 135: 333 –340.CrossRefGoogle Scholar
  10. Darrah, P.R., S. Staunton (2000) A mathematical model of root uptake of cations incorporating root turnover, distribution within the plants, and recycling of absorbed species.Eur. J. Soil Sci. 51: 643 –653.CrossRefGoogle Scholar
  11. De Souza, M.P., D. Chu, M. Zhao, A.M. Zayed, S.E. Ruzin, D. Schichnes, N.Terry (1999) Rhizosphere bacteria enhance selenium accumulation and volatilisation by Indian mustard.Plant Physiol., 119: 565 –573.CrossRefGoogle Scholar
  12. De Souza, M.P., I.J. Pickering, M.Walla, N. Terry (2002) Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass.Plant Physiol., 128: 625 –633.CrossRefGoogle Scholar
  13. Francis, A.J. (1999) Bioremediation of radionuclides and toxic metal contaminated soils and waters. In: D.C. Adriano (ed.), Bioremediation of metal contaminated soils. American Society of Agronomy, Madison, WI.Google Scholar
  14. Giller, K.E., E. Witter, S.P. McGrath (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review.Soil Biol. Biochem., 30: 1389 –1414.CrossRefGoogle Scholar
  15. Glass, D.J. (1999) U.S. and International Markets for Phytoremediation. 1999 –2000. D. Glass Assoc. Inc., Needham, MA.Google Scholar
  16. Hamer, G. (1994) Bioremediation: a response to gross environmental abuse.Trends Biotechnol. 11, 317 –319.CrossRefGoogle Scholar
  17. Holtan-Hartwig, L., P. Dörsch, L.R. Bakken (2002) Low temperature control of soil denitrifying communities: kinetics of N 2 O production and reduction.Soil Biol. Biochem. 3 4 : 1797 –1806.CrossRefGoogle Scholar
  18. Kunito, T., H. Oyaizu, S. Matsumoto (1998) Ecology of soil heavy-metal resistant bacteria and perspective of bioremediation of heavy metal-contaminated soils.Rec. Res. Dev. Agric. Biol. Chem., 2: 185 –206.Google Scholar
  19. Kunito, T., K. Saeki, K. Nagaoka, H. Oyaizu, S. Matsumoto (2001) Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil.Eur. J. Soil Biol., 37: 95 –102.CrossRefGoogle Scholar
  20. Lasat, M.M. (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metalinteraction and assessment of pertinent agronomic issues .J. Hazard. Subst. Res., 2: 1 –25.Google Scholar
  21. Lopez Alonso, M., J.L. Benedito, M. Miranda, C. Castillo, J. Hernández, R. F. Shore (2002) Interactions between toxic and essential trace metals in cattle from a region with low levels of pollution.Arch. Environ. Contam. Toxicol., 42: 165 –172CrossRefGoogle Scholar
  22. Luo, Ch., Z. Shen, X. Li (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.Chemosphere, 59: 1 –11.CrossRefGoogle Scholar
  23. McGrath, S.P., A.M. Chaudri, K.E. Giller (1995) Long-term effects of land application of sewage sludge: soil, microorganisms and plants.J . Ind. Microbiol., 14: 94 –104.CrossRefGoogle Scholar
  24. McGrath, S.P., F.-J. Zhao, E. Lombi (2001) Plant and rhizosphere processes involved in phytore-mediation of metal-contaminated soils .Plant Soil, 232: 207 –214.CrossRefGoogle Scholar
  25. Morales, K.H., L. Ryan, T.L.Kuo, M.M. Wu, C.J. Chen (2000) Risk of internal cancers from arsenic drinking water.Environ. Health Perspect., 108: 655 –661.CrossRefGoogle Scholar
  26. Moreno, F.N., C.W.N. Anderson, R.B. Stewart, B.H. Robinson (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings.Environ. Pollut., 136: 341 –352.CrossRefGoogle Scholar
  27. Nies, D.H. (1999) Microbial heavy-metal resistance.Appl. Microbiol. Biotechnol.,51, 6: 730 –750.CrossRefGoogle Scholar
  28. Osborn, A.M., K.D. Bruce, P. Strike, D.A. Ritchie (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon.FEMS Microbiol. Rev., 19: 239 –262.CrossRefGoogle Scholar
  29. Rascio, W. (1977) Metal accumulation by some plants growing on Zn mine deposits.OIKOS, 29: 250 –253.CrossRefGoogle Scholar
  30. Rauser, W.E. (1995) Phytochelatins and related peptides: structure, biosynthesis, and function.Plant Physiol., 109: 1141 –1149.CrossRefGoogle Scholar
  31. Robinson, N.J., A.M. Tommey, C. Kuske, P.J. Jackson (1993) Plant metallothioneins.J. Biochem. 295: 1 –10.Google Scholar
  32. Salt, D.E., M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, I. Raskin (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.Biotechnology, 13: 468 –474.CrossRefGoogle Scholar
  33. Salt, D.E., R.D. Smith, I. Raskin (1998) Phytoremediation. Annu. Rev. Plant Physiol.Plant Mol. Biol., 49: 643 –668.CrossRefGoogle Scholar
  34. Serrano, J. (1999) Balance de las actuaciones realizadas en relaci ón con el minero de Aznalc óllar. Seminario Internacional sobre Corredores Ecol ógicos y Restauraci ón de R íos y Riberas. Res úmenes Ponencias, pp. 13 –14. Junta de Andaluc ía. Consejer ía de Medio Ambiente.Google Scholar
  35. Sharples, J.M., A.A. Meharg, S.M. Chambers, J.W.G. Cairney (2000) Symbiotic solution to arsenic contamination.Nature, 404: 951 –952.Google Scholar
  36. Shilev, S., M. Benlloch, E.D. Sancho (2000) Effects of rhizospheric bacteria on heavy metals extraction by sunflower (Helianthus annuus). Plant Physiol.Biochem., 38 (Suppl): S19 –S81.Google Scholar
  37. 12th FESPP Congress, Budapest, Hungary, pp. 15 –18.Google Scholar
  38. Shilev, S., M. Benlloch, E. Sancho (2003) Utilization of rhizobacteriaPseudomonas fluorescensin phytoremediation strategies. In: T. Vanek and J.-P. Schwitzguebel (eds.), Phytoremediation Inventory COST Action 837 view, p. 39. VOCHB AVČR, Czech RepublicGoogle Scholar
  39. Simon, L. (1998) Cadmium accumulation and distribution in sunflower plants.J. Plant Nutr., 21: 341 –352CrossRefGoogle Scholar
  40. Steinmaus, C., L. Moore, C. Hopenhayn-Rich, M.L.Biggs, A.H. Smith (2000) Arsenic in drinking water and bladder cancer.Cancer Invest., 18: 174 –182.CrossRefGoogle Scholar
  41. Taiz, L., E. Zeiger (1991) Plant physiology. The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA.Google Scholar
  42. Torsvik, V., J. Goksoyr, F.L. Daae (1990) High diversity in DNA of soil bacteria. Appl.Environ. Microbiol., 56: 782 –787.Google Scholar
  43. Vassilev, A. (2002) Metal phytoextraction: state of the art and perspectives.Bulg. J. Agric. Sci., 8: 125 –140.Google Scholar
  44. Weast, R.C. (1984) CRC handbook of chemistry and physics, 64 edition. CRC Press Inc., Boca Raton, FL.Google Scholar
  45. Wenzel, W.W., D.C. Adriano, D. Salt, R. Smith (1999) Phytoremediation: a plant-microbe-based remediation system. In: D.C. Adriano, J.-M. Bollang, W.T. Frankenberger Jr, R.C. Slims (eds.), Bioremediation of contaminated soils, pp. 457 –508. American Society of Agronomy, Madison, WI.Google Scholar
  46. Zhu, Y.L., E.A.H. Pilot-Smith, A.S. Tarun, S.U. Weber, L. Jouanin, N. Terry (1999) Cadmium tolerance and accumulation in Indian mustard is enhance by overexpressing γ-glutamylcystein synthetase.Plant Physiol., 121: 1169 –1177.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stefan Shilev
    • 1
  • Manuel Benlloch
    • 2
  • R. Dios-Palomares
    • 2
  • Enrique D. Sancho
    • 2
  1. 1.Department of Microbiology and Environmental BiotechnologiesAgricultural University of PlovdivBulgaria
  2. 2.Departamento de Agronomía, Escuela Técnica Superior de Ingenieros Agrónomos y MontesCampus de Rabanales, Universidad de CórdobaCórdobaSpain

Personalised recommendations