Skip to main content

Abl Family Kinases in Mammalian Development

  • Chapter
Abl Family Kinases in Development and Disease

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Abl and Arg nonreceptor tyrosine kinases are widely expressed in mammals, where they contribute to the development of diverse organ and tissue systems. Deletion of abl or arg in mice reveals roles for the kinases in B and T lymphocyte development, neurulation, neuronal dendrite maintenance, synaptic plasticity, and osteoblast development. Double knockout abl -/- arg -/- mice die as embryos, indicating that Abl and Arg also perform essential and overlapping functions during embryonic development. Abl and Arg contain domains for protein-protein interactions (SH3, SH2, proline-rich sequences, PY sequences), cytoskeleton binding (filamentous actin and microtubule binding domains), nuclear translocation (nuclear localization and export sequences), and DNA binding. Although a full understanding of their molecular interactions is still forthcoming, it is clear that Abl and Arg provide many cell types with all-in-one multifunctional signaling tools that serve as links between the cell surface and downstream pathways to both the cytoskeleton and nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goff SP, Gilboa E, Witte ON et al. Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell 1980; 22(3):777–785.

    Article  PubMed  CAS  Google Scholar 

  2. Shtivelman E, Lifshitz B, Gale RP et al. Fused transcript of abl and bcr genes in chronic myelog-enous leukaemia. Nature 1985; 315(6020):550–554.

    Article  PubMed  CAS  Google Scholar 

  3. Abelson HT, Rabstein LS. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res 1970; 30(8):2213–2222.

    PubMed  CAS  Google Scholar 

  4. Van Etten RA. Studying the pathogenesis of BCR-ABL+ leukemia in mice. Oncogene 2002; 21(56):8643–8651.

    Article  PubMed  CAS  Google Scholar 

  5. Kruh GD, Perego R, Miki T et al. The complete coding sequence of arg defines the Abelson subfamily of cytoplasmic tyrosine kinases. Proc Natl Acad Sci USA 1990; 87(15):5802–5806.

    Article  PubMed  CAS  Google Scholar 

  6. Kruh GD, King CR, Kraus MH et al. A novel human gene closely related to the abl proto-oncogene. Science 1986; 234(4783):1545–1548.

    Article  PubMed  CAS  Google Scholar 

  7. Shtivelman E, Lifshitz B, Gale RP et al. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 1986; 47(2):277–284.

    Article  PubMed  CAS  Google Scholar 

  8. Ben-Neriah Y, Bernards A, Paskind M et al. Alternative 5’ exons in c-abl mRNA. Cell 1986; 44(4):577–586.

    Article  PubMed  CAS  Google Scholar 

  9. Daniel R, Chung SW, Eisenstein TK et al. Specific association of Type I c-Abl with Ran GTPase in lipopolysaccharide-mediated differentiation. Oncogene 2001; 20(21):2618–2625.

    Article  PubMed  CAS  Google Scholar 

  10. Daniel R, Wong PM, Chung SW. Isoform-specific functions of c-abl: type I is necessary for differentiation, and type IV is inhibitory to apoptosis. Cell Growth Differ 1996; 7(9):1141–1148.

    PubMed  CAS  Google Scholar 

  11. Hardin JD, Boast S, Mendelsohn M et al. Transgenes encoding both type I and type IV c-abl proteins rescue the lethality of c-abl mutant mice. Oncogene 1996; 12(12):2669–2677.

    PubMed  CAS  Google Scholar 

  12. Pendergast AM. The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 2002; 85:51–100.

    Article  PubMed  CAS  Google Scholar 

  13. McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12(4):1533–1546.

    PubMed  CAS  Google Scholar 

  14. Van Etten RA, Jackson PK, Baltimore D et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct F-and G-actin binding domains with bundling activity. J Cell Biol 1994; 124(3):325–340.

    Article  PubMed  Google Scholar 

  15. Wang Y, Miller AL, Mooseker MS et al. The Abl-related gene (Arg) nonreceptor tyrosine kinase uses two F-actin-binding domains to bundle F-actin. Proc Natl Acad Sci USA 2001; 98(26):14865–14870.

    Article  PubMed  CAS  Google Scholar 

  16. Miller AL, Wang Y, Mooseker MS et al. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion. J Cell Biol 2004; 165(3):407–419.

    Article  PubMed  CAS  Google Scholar 

  17. Wen ST, Jackson PK, Van Etten RA. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 1996; 15(7):1583–1595.

    PubMed  CAS  Google Scholar 

  18. Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58(4):669–678.

    Article  PubMed  Google Scholar 

  19. Taagepera S, McDonald D, Loeb JE et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 1998; 95(13):7457–7462.

    Article  PubMed  CAS  Google Scholar 

  20. Muller R, Slamon DJ, Tremblay JM et al. Differential expression of cellular oncogenes during pre-and postnatal development of the mouse. Nature 1982; 299(5884):640–644.

    Article  PubMed  CAS  Google Scholar 

  21. Koleske AJ, Gifford AM, Scott ML et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 1998; 21(6):1259–1272.

    Article  PubMed  CAS  Google Scholar 

  22. Renshaw MW, Capozza MA, Wang JY. Differential expression of type-specific c-abl mRNAs in mouse tissues and cell lines. Mol Cell Biol 1988; 8(10):4547–4551.

    PubMed  CAS  Google Scholar 

  23. Courtney KD, Grove M, Vandongen H et al. Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci 2000; 16(3):244–257.

    Article  PubMed  CAS  Google Scholar 

  24. O’Neill AJ, Cotter TG, Russell JM et al. Abl expression in human fetal and adult tissues, tumours, and tumour microvessels. J Pathol 1997; 183(3):325–329.

    Article  PubMed  CAS  Google Scholar 

  25. Perego R, Ron D, Kruh GD. Arg encodes a widely expressed 145 kDa protein-tyrosine kinase. Oncogene 1991; 6(10):1899–1902.

    PubMed  CAS  Google Scholar 

  26. Moresco EM, Scheetz AJ, Bornmann WG et al. Abl family nonreceptor tyrosine kinases modulate short-term synaptic plasticity. J Neurophysiol 2003; 89(3):1678–1687.

    Article  PubMed  CAS  Google Scholar 

  27. Tybulewicz VL, Crawford CE, Jackson PK et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 1991; 65(7):1153–1163.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartzberg PL, Stall AM, Hardin JD et al. Mice homozygous for the ablml mutation show poor viability and depletion of selected B and T cell populations. Cell 1991; 65(7):1165–1175.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartzberg PL, Goff SP, Robertson EJ. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 1989; 246(4931):799–803.

    Article  PubMed  CAS  Google Scholar 

  30. Schwartzberg PL, Robertson EJ, Goff SP. Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein. Proc Nad Acad Sci USA 1990; 87(8):3210–3214.

    Article  CAS  Google Scholar 

  31. Hardin JD, Boast S, Schwartzberg PL et al. Bone marrow B lymphocyte development in c-abl-deficient mice. Cell Immunol 1995; 165(1):44–54.

    Article  PubMed  CAS  Google Scholar 

  32. Bianchi C, Muradore I, Corizzato M et al. The expression of the nonreceptor tyrosine kinases Arg and c-abl is differently modulated in B lymphoid cells at different stages of differentiation. FEBS Lett 2002; 527(1–3):216–222.

    Article  PubMed  CAS  Google Scholar 

  33. Peschon JJ, Morrissey PJ, Grabstein KH et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180(5):1955–1960.

    Article  PubMed  CAS  Google Scholar 

  34. Grabstein KH, Waldschmidt TJ, Finkelman FD et al. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med 1993; 178(1):257–264.

    Article  PubMed  CAS  Google Scholar 

  35. von Freeden-Jeffry U, Vieira P, Lucian LA et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181(4):1519–1526.

    Article  Google Scholar 

  36. Valenzona HO, Dhanoa S, Finkelman FD et al. Exogenous interleukin 7 as a proliferative stimulant of early precursor B cells in mouse bone marrow: efficacy of IL-7 injection, IL-7 infusion and IL-7-anti-IL-7 antibody complexes. Cytokine 1998; 10(6):404–412.

    Article  PubMed  CAS  Google Scholar 

  37. Namen AE, Lupton S, Hjerrild K et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 1988; 333(6173):571–573.

    Article  PubMed  CAS  Google Scholar 

  38. Morrissey PJ, Conlon P, Charrier K et al. Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J Immunol 1991; 147(2):561–568.

    PubMed  CAS  Google Scholar 

  39. Rosenberg N. Abl-mediated transformation, immunoglobulin gene rearrangements and arrest of B lymphocyte differentiation. Semin Cancer Biol 1994; 5(2):95–102.

    PubMed  CAS  Google Scholar 

  40. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264(5164):1415–1421.

    Article  PubMed  CAS  Google Scholar 

  41. Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science 1995; 269(5232):1875–1877.

    Article  PubMed  CAS  Google Scholar 

  42. Banerjee A, Rothman P. IL-7 reconstitutes multiple aspects of v-Abl-mediated signaling. J Immunol 1998; 161(9):4611–4617.

    PubMed  CAS  Google Scholar 

  43. Fisher AG, Burdet C, Bunce C et al. Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. Int Immunol 1995; 7(3):415–423.

    Article  PubMed  CAS  Google Scholar 

  44. Rich BE, Campos-Torres J, Tepper RI et al. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J Exp Med 1993; 177(2):305–316.

    Article  PubMed  CAS  Google Scholar 

  45. Dorsch M, Goff SP. Increased sensitivity to apoptotic stimuli in c-abl-deficient progenitor B-cell lines. Proc Nad Acad Sci USA 1996; 93(23):13131–13136.

    Article  CAS  Google Scholar 

  46. Lu L, Osmond DG. Apoptosis and its modulation during B lymphopoiesis in mouse bone marrow. Immunol Rev 2000; 175:158–174.

    Article  PubMed  CAS  Google Scholar 

  47. Griffiths SD, Goodhead DT, Marsden SJ et al. Interleukin 7-dependent B lymphocyte precursor cells are ultrasensitive to apoptosis. J Exp Med 1994; 179(6):1789–1797.

    Article  PubMed  CAS  Google Scholar 

  48. Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997; 90(6):1073–1083.

    Article  PubMed  CAS  Google Scholar 

  49. Zipfel PA, Grove M, Blackburn K et al. The c-Abl tyrosine kinase is regulated downstream of the B cell antigen receptor and interacts with CD19. J Immunol 2000; 165(12):6872–6879.

    PubMed  CAS  Google Scholar 

  50. Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 1997; 15:453–479.

    Article  PubMed  CAS  Google Scholar 

  51. Cwynarski K, Laylor R, Macchiarulo E et al. Imatinib inhibits the activation and proliferation of normal T lymphocytes in vitro. Leukemia 2004; 18(8):1332–1339.

    Article  PubMed  CAS  Google Scholar 

  52. Dietz AB, Souan L, Knutson GJ et al. Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 2004; 104(4):1094–1099.

    Article  PubMed  CAS  Google Scholar 

  53. Zipfel PA, Zhang W, Quiroz M et al. Requirement for Abl kinases in T cell receptor signaling. Curr Biol 2004; 14(14):1222–1231.

    Article  PubMed  CAS  Google Scholar 

  54. Seggewiss R, Lore K, Greiner E et al. Imatinib inhibits T-cell receptor mediated T-cell proliferation and activation in a dose-dependent manner. Blood 2005; 105(6):2473–9.

    Article  PubMed  CAS  Google Scholar 

  55. Hardin JD, Boast S, Schwartzberg PL et al. Abnormal peripheral lymphocyte function in c-abl mutant mice. Cell Immunol 1996; 172(1):100–107.

    Article  PubMed  CAS  Google Scholar 

  56. Leng Y, Zhang J, Badour K et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci USA 2005; 102(4):1098–1103.

    Article  PubMed  CAS  Google Scholar 

  57. Zukerberg LR, Patrick GN, Nikolic M et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 2000; 26(3):633–646.

    Article  PubMed  CAS  Google Scholar 

  58. Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci 2003; 116 (Pt 13):2613–2626.

    Article  PubMed  CAS  Google Scholar 

  59. Hernandez SE, Krishnaswami M, Miller AL et al. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol 2004; 14(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  60. Moresco EMY, Donaldson S, Williamson A et al. Integrin-mediated dendrite maintenance requires Abl family kinases. J Neurosci. 2005; 25(26):6105–6118.

    Article  PubMed  CAS  Google Scholar 

  61. Hernandez SE, Settleman J, Koleske AJ. Adhesion-dependent regulation of pl90RhoGAP in the developing brain by the Abl-related gene tyrosine kinase. Curr Biol 2004; 14(8):691–696.

    Article  PubMed  CAS  Google Scholar 

  62. Ruchhoeft ML, Ohnuma S, McNeill L et al. The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J Neurosci 1999; 19(19):8454–8463.

    PubMed  CAS  Google Scholar 

  63. Finn AJ, Feng G, Pendergast AM. Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nat Neurosci 2003; 6(7):717–723.

    Article  PubMed  CAS  Google Scholar 

  64. Li B, Boast S, de los Santos K et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 2000; 24(3):304–308.

    Article  PubMed  CAS  Google Scholar 

  65. Lewis JM, Schwartz MA. Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 1998; 273(23):14225–14230.

    Article  PubMed  CAS  Google Scholar 

  66. Kurosaki T. Checks and balances on developing B cells. Nat Immunol 2003; 4(1):13–15.

    Article  PubMed  CAS  Google Scholar 

  67. Muljo SA, Schlissel MS. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 2003; 4(1):31–37.

    Article  PubMed  CAS  Google Scholar 

  68. Miao YJ, Wang JY. Binding of A/T-rich DNA by three high mobility group-like domains in c-Abl tyrosine kinase. J Biol Chem 1996; 271(37):22823–22830.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Moresco, E.M.Y. (2006). Abl Family Kinases in Mammalian Development. In: Abl Family Kinases in Development and Disease. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68744-5_8

Download citation

Publish with us

Policies and ethics