Abl Family Kinases in Mammalian Development

  • Eva Marie Y. Moresco
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Abl and Arg nonreceptor tyrosine kinases are widely expressed in mammals, where they contribute to the development of diverse organ and tissue systems. Deletion of abl or arg in mice reveals roles for the kinases in B and T lymphocyte development, neurulation, neuronal dendrite maintenance, synaptic plasticity, and osteoblast development. Double knockout abl -/- arg -/- mice die as embryos, indicating that Abl and Arg also perform essential and overlapping functions during embryonic development. Abl and Arg contain domains for protein-protein interactions (SH3, SH2, proline-rich sequences, PY sequences), cytoskeleton binding (filamentous actin and microtubule binding domains), nuclear translocation (nuclear localization and export sequences), and DNA binding. Although a full understanding of their molecular interactions is still forthcoming, it is clear that Abl and Arg provide many cell types with all-in-one multifunctional signaling tools that serve as links between the cell surface and downstream pathways to both the cytoskeleton and nucleus.


Nonreceptor Tyrosine Kinase Lymphocyte Development Abelson Murine Leukemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goff SP, Gilboa E, Witte ON et al. Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell 1980; 22(3):777–785.PubMedCrossRefGoogle Scholar
  2. 2.
    Shtivelman E, Lifshitz B, Gale RP et al. Fused transcript of abl and bcr genes in chronic myelog-enous leukaemia. Nature 1985; 315(6020):550–554.PubMedCrossRefGoogle Scholar
  3. 3.
    Abelson HT, Rabstein LS. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res 1970; 30(8):2213–2222.PubMedGoogle Scholar
  4. 4.
    Van Etten RA. Studying the pathogenesis of BCR-ABL+ leukemia in mice. Oncogene 2002; 21(56):8643–8651.PubMedCrossRefGoogle Scholar
  5. 5.
    Kruh GD, Perego R, Miki T et al. The complete coding sequence of arg defines the Abelson subfamily of cytoplasmic tyrosine kinases. Proc Natl Acad Sci USA 1990; 87(15):5802–5806.PubMedCrossRefGoogle Scholar
  6. 6.
    Kruh GD, King CR, Kraus MH et al. A novel human gene closely related to the abl proto-oncogene. Science 1986; 234(4783):1545–1548.PubMedCrossRefGoogle Scholar
  7. 7.
    Shtivelman E, Lifshitz B, Gale RP et al. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 1986; 47(2):277–284.PubMedCrossRefGoogle Scholar
  8. 8.
    Ben-Neriah Y, Bernards A, Paskind M et al. Alternative 5’ exons in c-abl mRNA. Cell 1986; 44(4):577–586.PubMedCrossRefGoogle Scholar
  9. 9.
    Daniel R, Chung SW, Eisenstein TK et al. Specific association of Type I c-Abl with Ran GTPase in lipopolysaccharide-mediated differentiation. Oncogene 2001; 20(21):2618–2625.PubMedCrossRefGoogle Scholar
  10. 10.
    Daniel R, Wong PM, Chung SW. Isoform-specific functions of c-abl: type I is necessary for differentiation, and type IV is inhibitory to apoptosis. Cell Growth Differ 1996; 7(9):1141–1148.PubMedGoogle Scholar
  11. 11.
    Hardin JD, Boast S, Mendelsohn M et al. Transgenes encoding both type I and type IV c-abl proteins rescue the lethality of c-abl mutant mice. Oncogene 1996; 12(12):2669–2677.PubMedGoogle Scholar
  12. 12.
    Pendergast AM. The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 2002; 85:51–100.PubMedCrossRefGoogle Scholar
  13. 13.
    McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12(4):1533–1546.PubMedGoogle Scholar
  14. 14.
    Van Etten RA, Jackson PK, Baltimore D et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct F-and G-actin binding domains with bundling activity. J Cell Biol 1994; 124(3):325–340.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Y, Miller AL, Mooseker MS et al. The Abl-related gene (Arg) nonreceptor tyrosine kinase uses two F-actin-binding domains to bundle F-actin. Proc Natl Acad Sci USA 2001; 98(26):14865–14870.PubMedCrossRefGoogle Scholar
  16. 16.
    Miller AL, Wang Y, Mooseker MS et al. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion. J Cell Biol 2004; 165(3):407–419.PubMedCrossRefGoogle Scholar
  17. 17.
    Wen ST, Jackson PK, Van Etten RA. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 1996; 15(7):1583–1595.PubMedGoogle Scholar
  18. 18.
    Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58(4):669–678.PubMedCrossRefGoogle Scholar
  19. 19.
    Taagepera S, McDonald D, Loeb JE et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 1998; 95(13):7457–7462.PubMedCrossRefGoogle Scholar
  20. 20.
    Muller R, Slamon DJ, Tremblay JM et al. Differential expression of cellular oncogenes during pre-and postnatal development of the mouse. Nature 1982; 299(5884):640–644.PubMedCrossRefGoogle Scholar
  21. 21.
    Koleske AJ, Gifford AM, Scott ML et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 1998; 21(6):1259–1272.PubMedCrossRefGoogle Scholar
  22. 22.
    Renshaw MW, Capozza MA, Wang JY. Differential expression of type-specific c-abl mRNAs in mouse tissues and cell lines. Mol Cell Biol 1988; 8(10):4547–4551.PubMedGoogle Scholar
  23. 23.
    Courtney KD, Grove M, Vandongen H et al. Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci 2000; 16(3):244–257.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Neill AJ, Cotter TG, Russell JM et al. Abl expression in human fetal and adult tissues, tumours, and tumour microvessels. J Pathol 1997; 183(3):325–329.PubMedCrossRefGoogle Scholar
  25. 25.
    Perego R, Ron D, Kruh GD. Arg encodes a widely expressed 145 kDa protein-tyrosine kinase. Oncogene 1991; 6(10):1899–1902.PubMedGoogle Scholar
  26. 26.
    Moresco EM, Scheetz AJ, Bornmann WG et al. Abl family nonreceptor tyrosine kinases modulate short-term synaptic plasticity. J Neurophysiol 2003; 89(3):1678–1687.PubMedCrossRefGoogle Scholar
  27. 27.
    Tybulewicz VL, Crawford CE, Jackson PK et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 1991; 65(7):1153–1163.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartzberg PL, Stall AM, Hardin JD et al. Mice homozygous for the ablml mutation show poor viability and depletion of selected B and T cell populations. Cell 1991; 65(7):1165–1175.PubMedCrossRefGoogle Scholar
  29. 29.
    Schwartzberg PL, Goff SP, Robertson EJ. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 1989; 246(4931):799–803.PubMedCrossRefGoogle Scholar
  30. 30.
    Schwartzberg PL, Robertson EJ, Goff SP. Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein. Proc Nad Acad Sci USA 1990; 87(8):3210–3214.CrossRefGoogle Scholar
  31. 31.
    Hardin JD, Boast S, Schwartzberg PL et al. Bone marrow B lymphocyte development in c-abl-deficient mice. Cell Immunol 1995; 165(1):44–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Bianchi C, Muradore I, Corizzato M et al. The expression of the nonreceptor tyrosine kinases Arg and c-abl is differently modulated in B lymphoid cells at different stages of differentiation. FEBS Lett 2002; 527(1–3):216–222.PubMedCrossRefGoogle Scholar
  33. 33.
    Peschon JJ, Morrissey PJ, Grabstein KH et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180(5):1955–1960.PubMedCrossRefGoogle Scholar
  34. 34.
    Grabstein KH, Waldschmidt TJ, Finkelman FD et al. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med 1993; 178(1):257–264.PubMedCrossRefGoogle Scholar
  35. 35.
    von Freeden-Jeffry U, Vieira P, Lucian LA et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181(4):1519–1526.CrossRefGoogle Scholar
  36. 36.
    Valenzona HO, Dhanoa S, Finkelman FD et al. Exogenous interleukin 7 as a proliferative stimulant of early precursor B cells in mouse bone marrow: efficacy of IL-7 injection, IL-7 infusion and IL-7-anti-IL-7 antibody complexes. Cytokine 1998; 10(6):404–412.PubMedCrossRefGoogle Scholar
  37. 37.
    Namen AE, Lupton S, Hjerrild K et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 1988; 333(6173):571–573.PubMedCrossRefGoogle Scholar
  38. 38.
    Morrissey PJ, Conlon P, Charrier K et al. Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J Immunol 1991; 147(2):561–568.PubMedGoogle Scholar
  39. 39.
    Rosenberg N. Abl-mediated transformation, immunoglobulin gene rearrangements and arrest of B lymphocyte differentiation. Semin Cancer Biol 1994; 5(2):95–102.PubMedGoogle Scholar
  40. 40.
    Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264(5164):1415–1421.PubMedCrossRefGoogle Scholar
  41. 41.
    Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science 1995; 269(5232):1875–1877.PubMedCrossRefGoogle Scholar
  42. 42.
    Banerjee A, Rothman P. IL-7 reconstitutes multiple aspects of v-Abl-mediated signaling. J Immunol 1998; 161(9):4611–4617.PubMedGoogle Scholar
  43. 43.
    Fisher AG, Burdet C, Bunce C et al. Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. Int Immunol 1995; 7(3):415–423.PubMedCrossRefGoogle Scholar
  44. 44.
    Rich BE, Campos-Torres J, Tepper RI et al. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J Exp Med 1993; 177(2):305–316.PubMedCrossRefGoogle Scholar
  45. 45.
    Dorsch M, Goff SP. Increased sensitivity to apoptotic stimuli in c-abl-deficient progenitor B-cell lines. Proc Nad Acad Sci USA 1996; 93(23):13131–13136.CrossRefGoogle Scholar
  46. 46.
    Lu L, Osmond DG. Apoptosis and its modulation during B lymphopoiesis in mouse bone marrow. Immunol Rev 2000; 175:158–174.PubMedCrossRefGoogle Scholar
  47. 47.
    Griffiths SD, Goodhead DT, Marsden SJ et al. Interleukin 7-dependent B lymphocyte precursor cells are ultrasensitive to apoptosis. J Exp Med 1994; 179(6):1789–1797.PubMedCrossRefGoogle Scholar
  48. 48.
    Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997; 90(6):1073–1083.PubMedCrossRefGoogle Scholar
  49. 49.
    Zipfel PA, Grove M, Blackburn K et al. The c-Abl tyrosine kinase is regulated downstream of the B cell antigen receptor and interacts with CD19. J Immunol 2000; 165(12):6872–6879.PubMedGoogle Scholar
  50. 50.
    Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 1997; 15:453–479.PubMedCrossRefGoogle Scholar
  51. 51.
    Cwynarski K, Laylor R, Macchiarulo E et al. Imatinib inhibits the activation and proliferation of normal T lymphocytes in vitro. Leukemia 2004; 18(8):1332–1339.PubMedCrossRefGoogle Scholar
  52. 52.
    Dietz AB, Souan L, Knutson GJ et al. Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 2004; 104(4):1094–1099.PubMedCrossRefGoogle Scholar
  53. 53.
    Zipfel PA, Zhang W, Quiroz M et al. Requirement for Abl kinases in T cell receptor signaling. Curr Biol 2004; 14(14):1222–1231.PubMedCrossRefGoogle Scholar
  54. 54.
    Seggewiss R, Lore K, Greiner E et al. Imatinib inhibits T-cell receptor mediated T-cell proliferation and activation in a dose-dependent manner. Blood 2005; 105(6):2473–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Hardin JD, Boast S, Schwartzberg PL et al. Abnormal peripheral lymphocyte function in c-abl mutant mice. Cell Immunol 1996; 172(1):100–107.PubMedCrossRefGoogle Scholar
  56. 56.
    Leng Y, Zhang J, Badour K et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci USA 2005; 102(4):1098–1103.PubMedCrossRefGoogle Scholar
  57. 57.
    Zukerberg LR, Patrick GN, Nikolic M et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 2000; 26(3):633–646.PubMedCrossRefGoogle Scholar
  58. 58.
    Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci 2003; 116 (Pt 13):2613–2626.PubMedCrossRefGoogle Scholar
  59. 59.
    Hernandez SE, Krishnaswami M, Miller AL et al. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol 2004; 14(1):36–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Moresco EMY, Donaldson S, Williamson A et al. Integrin-mediated dendrite maintenance requires Abl family kinases. J Neurosci. 2005; 25(26):6105–6118.PubMedCrossRefGoogle Scholar
  61. 61.
    Hernandez SE, Settleman J, Koleske AJ. Adhesion-dependent regulation of pl90RhoGAP in the developing brain by the Abl-related gene tyrosine kinase. Curr Biol 2004; 14(8):691–696.PubMedCrossRefGoogle Scholar
  62. 62.
    Ruchhoeft ML, Ohnuma S, McNeill L et al. The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J Neurosci 1999; 19(19):8454–8463.PubMedGoogle Scholar
  63. 63.
    Finn AJ, Feng G, Pendergast AM. Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nat Neurosci 2003; 6(7):717–723.PubMedCrossRefGoogle Scholar
  64. 64.
    Li B, Boast S, de los Santos K et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 2000; 24(3):304–308.PubMedCrossRefGoogle Scholar
  65. 65.
    Lewis JM, Schwartz MA. Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 1998; 273(23):14225–14230.PubMedCrossRefGoogle Scholar
  66. 66.
    Kurosaki T. Checks and balances on developing B cells. Nat Immunol 2003; 4(1):13–15.PubMedCrossRefGoogle Scholar
  67. 67.
    Muljo SA, Schlissel MS. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 2003; 4(1):31–37.PubMedCrossRefGoogle Scholar
  68. 68.
    Miao YJ, Wang JY. Binding of A/T-rich DNA by three high mobility group-like domains in c-Abl tyrosine kinase. J Biol Chem 1996; 271(37):22823–22830.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2006

Authors and Affiliations

  • Eva Marie Y. Moresco
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale Uniersity School of MedicineNew HavenUSA

Personalised recommendations