Advertisement

Congestion Minimization in Modern Placement Circuits

  • Taraneh Taghavi
  • Xiaojian Yang
  • Bo-Kyung Choi
  • Maogang Wang
  • Majid Sarrafzadeh
Part of the Series on Integrated Circuits and Systems book series (ICIR)

In this chapter, we propose a placement tool called Dragon which deploys hierarchical techniques to place large-scale mixed size designs that may contain thousand of macro blocks and millions of standard cells [1–3]. Min-cut-based top-down approach is taken to handle the large complexity of designs and simulated annealing is used to minimize the total wire length. Min-cut partitioning should be aware of large macro cells and may result in bins with different sizes. During simulated annealing, different bin sizes have to be considered. The techniques discussed in this work can be easily incorporated into any hierarchical placement flow and effectively produce legal final layouts with a short runtime.

Keywords

Wire Length White Space Macro Cell Macro Block Placement Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taghavi T, Yang X, Choi B.K, Wang M, Sarrafzadeh M (2006) Dragon2006: Blockage-Aware Congestion-Controlling Mixed-Sized Placer. International Symposium on Physical Design 209-211Google Scholar
  2. 2.
    Taghavi T, Yang X, Choi B.K, Wang M, Sarrafzadeh M (2005) Dragon2005: Large-Scale Mixed-Sized Placement Tool. International Symposium on Physical Design 245-247Google Scholar
  3. 3.
    Wang M, Yang X, Sarrafzadeh M (2000) Dragon2000: Fast standard-cell placement for large circuits. International Conference on Computer-Aided Design 260-263Google Scholar
  4. 4.
    Taghavi T, Amelifard B, Sarrafzadeh M (2006) Hierarchical Wirelength Estimation for Large-Scale Circuits in the Presence of IP Blocks. Submitted to IEEE Transaction on Very Large Scale Integration Systems, Special Section on System Level Interconnect PredictionGoogle Scholar
  5. 5.
    Yang X, Kastner R, Sarrafzadeh M (2001) Congestion Estimation during Top-Down Placement International Symposium on Physical Design(ISPD) 164-169Google Scholar
  6. 6.
    Taghavi T, Sarrafzadeh M (2006) Blockage-Oriented Placement. IEEE Electronic Design Process WorkshopGoogle Scholar
  7. 7.
    Yang X, Choi B.K, Sarrafzadeh M (April 2002) Routability-Driven White Space Allocation for Fixed-Die Standard-Cell Placement. ACM International Symposium on Physical Design 42-47Google Scholar
  8. 8.
    Breuer M.A (1977) A Class of Min-cut Placement Algorithms. IEEE/ACM Design Automation Conference 284-290Google Scholar
  9. 9.
    Dunlop A.E, Kernighan B.W (Jan. 1985) A Procedure for Placement of Standard Cell VLSI Circuits. IEEE Transactions on Computer Aided Design 4(1):92-98CrossRefGoogle Scholar
  10. 10.
    Cheng C.E (1994) RISA: Accurate and Efficient Placement Routability Modeling. International Conference on Computer-Aided Design 690-695Google Scholar
  11. 11.
    Wang M, Yang X, Sarrafzadeh M (2000) Congestion Minimization During Placement. IEEE Transactions on Computer Aided Design 19(10):1140-1148CrossRefGoogle Scholar
  12. 12.
    Caldwell A.E, Kahng A.B, Markov I.L (June 2000) Can Recursive Bisection Alone Produce Routable Placements?. IEEE/ACM Design Automation Conference 477-482Google Scholar
  13. 13.
    Sechen C, Sangiovanni-Vincentelli A (1986) TimberWolf3.2: A New Standard Cell Placement and Global Routing Package. IEEE/ACM Design Automation Conference 432-439Google Scholar
  14. 14.
    Sigl G, Doll K, Johannes F.M (1991) Analytical Placement: A Linear or a Quadratic Objective Function. IEEE/ACM Design Automation Conference 427-432Google Scholar
  15. 15.
    Wang M, Sarrafzadeh M (April 1999) “Behavior of Congestion Minimization During Placement”. ACM International Symposium on Physical Design pages 145-150Google Scholar
  16. 16.
    Wang M, Yang X, Eguro K, Sarrafzadeh M (April 2000) Multi-Center Congestion Estimation and Minimization During Placement. ACM International Symposium on Physical Design 147-152Google Scholar
  17. 17.
    Landman B, Russo R. (1971) On a Pin Versus Block Relationship for Partitions of Logic Graphs. IEEE Transactions on Computers c-20:1469-1479Google Scholar
  18. 18.
    Donath W.E (April 1979) Placement and Average Interconnection Lengths of Computer Logic. IEEE Transactions on Circuits and Systems 26(4):272-277MATHCrossRefGoogle Scholar
  19. 19.
    Cheng C.-K, Kahng A.B, Liu B. L, Stroobandt D (Feb 2001) Toward Better Wireload Models in the Presence of Obstacles. Asia and South Pacific Design Automation Conf. 527-532.Google Scholar
  20. 20.
    Stroobandt D, Campenhout J.V (1999) Accurate Interconnection Length Estimations for Predictions Early in the Design Cycle. VLSI Design, Special Issue on Physical Design in Deep Submicron 10(1):1-20Google Scholar
  21. 21.
    Davis J.A, De V.K, Meindl J (March 1998) A Stochastic Wire-Length Distribution for Gigascale Integration(GSI) - Part I: Derivation and Validation. IEEE Transactions on Electron Devices 45(3):580-589CrossRefGoogle Scholar
  22. 22.
    Hagen L, Kahng A.B, Kurdahi F.J, Ramachandran C (Jan 1994) On the Intrinsic Rent Parameter and Spectra-Based Partitioning Methodologies. IEEE Transactions on Computer Aided Design 13(no.1):27-37CrossRefGoogle Scholar
  23. 23.
    Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel Hypergraph Partitioning: Application in VLSI Domain. IEEE/ACM Design Automation Conference 526-529Google Scholar
  24. 24.
    Kleinhans J.M, Sigl G, Johannes F.M, Antreich K.J (1991) GORDIAN: VLSI Placement by Quadratic Programming and Slicing Optimization. IEEE Trans. on Computer Aided Design 10(3):365-365Google Scholar
  25. 25.
    Mayrhofer S, Lauther U (1990) Congestion-Driven Placement Using a New Multipartitioning Heuristic. International Conference on Computer-Aided Design 332-335Google Scholar
  26. 26.
    Parakh P.N, Brown R.B, Sakalleh K.A (June 1998) Congestion Driven Quadratic Placement. IEEE/ACM Design Automation Conference 275-278Google Scholar
  27. 27.
    Cong J, Romesis M, Xie M (Apr 2003) Optimality, scalability and stability study of partitioning and placement algorithms. International Symposium on Physical Design 88-94Google Scholar
  28. 28.
    Madden P.H. (Apr. 2001) Reporting of standard cell placement results. ACM International Symposium on Physical Design 30-35Google Scholar
  29. 29.
    Xu H, Wang M, Choi B.-K., Sarrafzadeh M (Nov. 2003) Toop: A trade-off oriented placement tool. International Conference on Computer-Aided Design 467-471Google Scholar
  30. 30.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Taraneh Taghavi
  • Xiaojian Yang
  • Bo-Kyung Choi
  • Maogang Wang
  • Majid Sarrafzadeh

There are no affiliations available

Personalised recommendations