Skip to main content

Virus-Induced Subversion of CTL Responses

  • Chapter
Killer Cell Dynamics

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 32))

  • 1170 Accesses

Abstract

So far, this book has discussed how CTL responses can fight viral infections, leading to their successful resolution and clearance. On the other hand, viruses have the ability to avoid clearance by a variety of mechanisms. A very prominent mechanism that has been documented in the context of several pathogens is antigenic escape. Viral epitopes acquire mutations that prevent the CTL response from recognizing the epitope. Consequently, the infected cell is not attacked by the CTL. HIV is probably the best known virus that shows extensive antigenic escape [(1996); (1997); (2001); (1991); (1997a); (1999)]. Because HIV has a relatively high mutation rate, escape mutants are readily generated and this can contribute to the inability of the CTL response to fight HIV effectively, and it might contribute to the eventual development of AIDS. HCV infection is another example of a human pathogen that can readily acquire mutations, allowing it to escape from immune responses [(2000)]. Another mechanism to avoid immune-mediated clearance is to establish a latent infection [(1999)]. This means that cells can be infected by the virus, but once inside the cell, the virus is silent and does not produce further progeny viruses for prolonged periods of time. If the virus is silent, the CTL cannot recognize that the cell is infected, because no viral proteins are produced. If the cell is sufficiently long-lived, it can carry the virus and provide a reservoir for viral persistence. At certain time intervals, the virus can reactivate in the cells and start producing new virus particles. This is called the lytic phase of the infection, and the CTL response tends to prevent growth of the virus to high numbers. Thus, while the CTL manage to control the virus in this case, latent infection of cells prevents clearance of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Virus-Induced Subversion of CTL Responses. In: Wodarz, D. (eds) Killer Cell Dynamics. Interdisciplinary Applied Mathematics, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68733-9_11

Download citation

Publish with us

Policies and ethics