Advertisement

Prebiotic Carbohydrates and Their Derivates

  • O.P. Pestunova
  • A.N. Simonov
  • V.N. Snytnikov
  • V.N. Parmon

Abstract

The most significant experimental results on the putative synthesis of various carbohydrates and their derivates from simple substrates in plausible prebiotic conditions are summarized and discussed. The synthesis of monosaccharides from formaldehyde and lower carbohydrates (glycolaldehyde, glyceraldehyde, dihydroxyacetone) can be catalyzed by different compounds such as lead, phosphate and borate ions and several natural minerals. Lower carbohydrates can be directly formed in aqueous formaldehyde solutions under the action ofUV-irradiation. The possible role of carbohydrates and their derivates in the chemical evolution and development of presumable abiogenic metabolism is illustrated as well.

Keywords

Natural Mineral Lower Carbohydrate Aldol Condensation Amino Acid Complex Prebiotic Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ahmed, S.N., McKee, M.L. and Shevlin, P.B. (1983) J. Am. Chem. Soc. 105, 3942–3947.CrossRefGoogle Scholar
  2. Altman, S. (1989) Adv. Enzymol. Relat. Areas Mol. Biol. 62, 1.PubMedCrossRefGoogle Scholar
  3. Arrhenius, G., Sales, B., Mojzsis, S. and Lee, T. (1997) J. Theor. Biol. 187, 503.PubMedCrossRefGoogle Scholar
  4. Baly, E.C.C. (1924) Ind. Eng. Chem. 16, 1016–1018Google Scholar
  5. Benner, S.A. (2004) Acc. Chem. Res. 37, 784–797.PubMedCrossRefGoogle Scholar
  6. Breslow, R. (1959) Tetrahedron Lett. 1, C22–C26.Google Scholar
  7. de Bruijn, J.M., Kieboom, A.P.G. and van Bekkum, H. (1986) J. Carbohydr. Chem. 5, 561–569.CrossRefGoogle Scholar
  8. Cairns-Smith, A.G. (1982) Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, Cambridge.Google Scholar
  9. Cairns-Smith, A.G., Ingram, P. and Walker, G.L. (1972) J. Theor. Biol. 35, 601–604.PubMedCrossRefGoogle Scholar
  10. Cech, R.R., Zaug, A.J. and Grabowski, P.J. (1981) Cell. 27, 487.Google Scholar
  11. Crick, F. (1981) Life Itself. It’s Origin and Nature. Simon and Schuster, New York.Google Scholar
  12. de Duve, C. (1991). Blueprint for a Cell: The Nature and Origin of Life. Patterson, New York.Google Scholar
  13. Feather, M.S. and Harris, J.F. (1973) Dehydration reactions of carbohydrates. In: R.S. Tipson and D. Horton (Eds), Advances in Carbohydrate Chemistry and Biochemistry. Academic Press, New York, 28, pp. 161–224.Google Scholar
  14. Flanagan, G., Ahmed, S.N. and Shevlin, P.B. (1992) J. Am. Chem. Soc. 114, 3892–3896.CrossRefGoogle Scholar
  15. Gabel, N.W. and Ponnamperuma, C. (1967) Nature 216, 453–455.PubMedCrossRefGoogle Scholar
  16. Gesteland R.F. and Atkins J.F. (Eds) (1993) The RNA World. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  17. Grimmet, M.R. (1965) Rev. Pure Appl. Chem. 15, 101–108.Google Scholar
  18. Gutsche, C.D., Redmore, D., Buriks, R.S., Nowotny, K., Grassner, H. and Armbruster, C.W. (1967) J. Am. Chem. Soc. 89, 1235–1245.PubMedCrossRefGoogle Scholar
  19. Harsch, G., Bauer, H. and Voelter, W. (1984) Kinetik, Liebigs Ann. Chem. 4, 623–635.CrossRefGoogle Scholar
  20. Hartman, H. (1998). Orig. Life Evol. Biosph. 28, 515–521.PubMedCrossRefGoogle Scholar
  21. Hudson, R.L. and Moore, M.H. (2004) The formation, destruction, and spectra of extraterrestrial biological and prebiological molecules. Abstract 35th COSPAR Scientific Assembly, Paris, France (CD-ROM, COSPAR04-A-03541).Google Scholar
  22. Ingar, A.A., Luke, R.W.A., Hayter, B.R. and Sutherland, J.D. (2003) ChemBioChem 4, 504–507.PubMedCrossRefGoogle Scholar
  23. Irie, A. (1989) Carbohydr. Res. 190, 23–28.CrossRefGoogle Scholar
  24. Joyce, G.F. (1991) New Biol. 3, 399.PubMedGoogle Scholar
  25. Kawakami, T. (2001) J. Metamorph. Geol. 19, 61–75.CrossRefGoogle Scholar
  26. Khomenko, T.I., Sakharov, M.M. and Golovina, O.A. (1980) Russ. Chem. Rev. 49, 570–584.CrossRefGoogle Scholar
  27. Kofoed, J., Reymond, J. and Darbre, T. (2005) Org. Biomol. Chem. 3, 1850–1855.PubMedCrossRefGoogle Scholar
  28. Kolb, V.M., Dworkin, J.P. and Miller, S.L. (1994) J. Mol. Evol. 38, 549–557.PubMedCrossRefGoogle Scholar
  29. Kort, M.J. (1970) Reactions of free sugars with aqueous ammonia. In: R.S. Tipson and D. Horton (Eds) Advances in Carbohydrate Chemistry and Biochemistry. Academic Press, New York, 25, pp. 311–349.Google Scholar
  30. Krishnamurty, R., Arrhenius, G. and Eschenmoser, A. (1999) Orig. Life Evol. Biosph. 29, 333–354.CrossRefGoogle Scholar
  31. Langenbeck, W. (1954) Angew. Chem. 66, 151.Google Scholar
  32. Larralde, R., Robertson, M.P. and Miller, S.L. (1995) Proc. Natl Acad. Sci. USA. 92, 8158–8160.PubMedCrossRefGoogle Scholar
  33. Lee, D.H., Severin, K., Yokobayashi, Y. and Ghadiri, M.R. (1997) Nature 390, 591–594.PubMedCrossRefGoogle Scholar
  34. Litvak, M.M. (1972) Non-equilibrium processes in interstellar molecules. In: T.R. Carson, and M.J. Roberts (Eds), Atoms and Molecules in Astrophysics. Academic Press, London and New York, p. 201.Google Scholar
  35. Mayer, R. and Jaschke, L. (1960) Lieb. Ann. Chem. 635, 145–153.CrossRefGoogle Scholar
  36. Mizuno, T. and Weiss, A. (1974) Adv. Carbohydr. Chem. Biochem. 29, 173.CrossRefGoogle Scholar
  37. Molina, L.T., Tang, K.Y., Sodeau, J.R. and Lee, E.K.C. (1978) J. Phys. Chem. 82, 2575–2578.CrossRefGoogle Scholar
  38. Moody, J.B. (1976) Lithos 9, 125–138.CrossRefGoogle Scholar
  39. Müller, D., Pitsch, S., Kittaka, A., Wagner, E., Wintner, C.E. and Eschenmoser, A. (1990) Helv. Chim. Acta 73, 1410.CrossRefGoogle Scholar
  40. Orgel, L.E. (2002) Orig. Life Evol. Biosph. 32, 279–281.PubMedCrossRefGoogle Scholar
  41. Ostrovskii, V.E. and Kadyshevich E.A. (2007) Phisics-Uspekhi 50, 175—196.CrossRefGoogle Scholar
  42. Pestunova, O., Simonov, A., Snytnikov, V., Stoyanovsky, V. and Parmon, V. (2005) Adv. Space Res. 36(2), 214–219.CrossRefGoogle Scholar
  43. Pitsch, S., Eschenmoser, A., Gedulin, B., Hui, S. and Arrhenius, G. (1995) Orig. Life Evol. Biosph. 25, 297–334.PubMedCrossRefGoogle Scholar
  44. Reid, C. and Orgel, L.E. (1967) Nature 216, 455.PubMedCrossRefGoogle Scholar
  45. Ricardo, A., Carrigan, M.A., Olcot, A.N. and Benner, S.A. (2004) Science 303, 196.PubMedCrossRefGoogle Scholar
  46. Sanchez, R.A. and Orgel, L.E. (1970) J. Mol. Biol. 47, 531–543.PubMedCrossRefGoogle Scholar
  47. Saxton, B. (2004) Cold Sugar in Space Provides Clue to the Molecular Origin of Life. http://www.nrao.edu/pr/2004/coldsugar/.
  48. Schimpl, A., Lemmon, R.M. and Calvin, M. (1965) Science 147, 149–150.PubMedCrossRefGoogle Scholar
  49. Schwartz, A.W. and de Graaf, R.M. (1993) Mol. Evol. 36, 101–106.CrossRefGoogle Scholar
  50. Segre, D. and Lancet, D. (1997). Mutually catalytic amphiphiles: simulated chemical evolution and implications to exobiology. In: J. Chela-Flores and F. Raulin (Eds) Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe, Proc. the 5th Trieste Conf. on Chemical Evolution. Kluwer Academic Publishers, Trieste, pp. 123–131.Google Scholar
  51. Shigemasa, Y., Matsuda, Y., Sakazawa, C. et al. (1977) Bull. Chem. Soc. Jpn 50, 222–226.CrossRefGoogle Scholar
  52. Simoneit, B.R.T. (2004) Adv. Space Res. 33, 88–94.CrossRefGoogle Scholar
  53. Simonov, A.N., Pestunova, O.P., Matvienko, L.G. and Parmon, V.N. (2007a) Kinet. Catal. 48(2), 245–254.CrossRefGoogle Scholar
  54. Simonov, A.N., Pestunova, O.P., Matvienko, L.G., Snytnikov, V.N., Snytnikova, O.A., Tsentalovich, Yu.P. and Parmon, V.N. (2007b) Possible prebiotic synthesis of monosaccharides from formaldehyde in presence of phosphates. Adv. Space Res. doi:10.1016/j.asr.2007.08.002Google Scholar
  55. Socha, R.F., Weiss, A. and Sakharov, M.M. (1981) J. Catal. 67, 207–217.CrossRefGoogle Scholar
  56. Sodeau, J.R. and Lee, E.K.C. (1978) Chem. Phys. Lett. 57(1), 71–74.Google Scholar
  57. Tolstoguzov, V. (2004) Orig. Life Evol. Biosph. 34, 571–597.PubMedCrossRefGoogle Scholar
  58. Wächtershäuser, G. (1992). Prog. Biophys. Mol. Biol. 58, 85–201.PubMedCrossRefGoogle Scholar
  59. Weber, A.L. (1984a) J. Mol. Evol. 20, 157–166.CrossRefGoogle Scholar
  60. Weber, A.L. (1984b) Orig. Life Evol. Biosph. 15, 17–27.CrossRefGoogle Scholar
  61. Weber, A.L. (1985) J. Mol. Evol. 21, 351–355.PubMedCrossRefGoogle Scholar
  62. Weber, A.L. (1997) J. Mol. Evol. 44, 354–360.PubMedCrossRefGoogle Scholar
  63. Weber, A.L. (1998) Orig. Life Evol. Biosph. 28, 259–270.PubMedCrossRefGoogle Scholar
  64. Weber, A.L. (2000) Orig. Life Evol. Biosph. 30, 33–43.PubMedCrossRefGoogle Scholar
  65. Weber, A.L. (2001) Orig. Life Evol. Biosph. 31, 71–86.PubMedCrossRefGoogle Scholar
  66. Yao, S., Ghosh, I., Zutshi, R. and Chmielewski, J. (1998) Nature 396, 447–450.PubMedCrossRefGoogle Scholar
  67. Zubay, G. (1998) Orig. Life Evol. Biosph. 28, 13–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • O.P. Pestunova
    • 1
  • A.N. Simonov
  • V.N. Snytnikov
  • V.N. Parmon
  1. 1.Department of Nontraditional Catalytic ProcessesBoreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations