Skip to main content

Hierarchical Scale-Free Representation of Biological Realm—Its Origin and Evolution

  • Chapter
Biosphere Origin and Evolution

Abstract

In this work we develop the concept of biological referents to analyze the origin of complexity of biological systems. The concept, as we demonstrate, can be formalized by classes of the objects which constitute hierarchic scale-free patterning at different levels of biological complexity. By this reason, ultrametric relationships between these classes are assumed to be relevant to the referent representation. To explore this idea, we realize particular formalization of the referent concept including construction of objects and classes, construction of ultrametric space of classes, and description of the ultrametric space by a field of p-adic numbers. We discuss how a notation “evolution” can be introduced through ultrametric formalism. An example of ultrametric evolutionary equations is presented. Finally, we demonstrate that different aspects of the origin and evolution of the Biosphere (such as macroevolution and development) being verified in the frame of the referent concept acquire new contours and interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, S. (1920) Space, Time, and Deity, vol. 2. Macmillan, London (cited by Korn 2005).

    Google Scholar 

  • Andersson, S.G., Karlberg, O., Canback, B. and Kurland, C.G. (2003) On the origin of mitochondria: a genomics perspective. Phil. Trans. R. Soc. Lond. B 358, 165–177.

    Article  CAS  Google Scholar 

  • Arnold, M.L. (1997) Natural Hybridization and Evolution. Oxford University Press, New York.

    Google Scholar 

  • Avetisov, V.A. (2004) Origin of biological homochirality: in search of evolutional dynamics. In: G. Pályi, C. Zucchi and L. Calglioty (Eds), Progress in Biological Chirality. Elsevier, Amsterdam, pp. 3–12.

    Google Scholar 

  • Avetisov, V.A., Bikulov, A.H., Kozyrev S.V. and Osipov, V.A. (2002) p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes. J. Phys. A: Math. Gen. 35, 177–189.

    Article  CAS  Google Scholar 

  • Avetisov, V.A., Bikulov, A.H. and Osipov, V.A. (2003) p-Adic description of characteristic relaxation in complex systems. J. Phys. A: Math. Gen. 36, 4239–4246.

    Article  Google Scholar 

  • Avetisov, V.A. and Zhuravlev Yu.N. (2007) An evolutionary interpretation of the p-adic ultrametric diffusion equation. Doklady Math. 75, 453–455.

    Article  Google Scholar 

  • Ayala, F.J. (2000) Debating Darwin. Biol. Phil. 15, 559–573.

    Article  Google Scholar 

  • Ayala, F.J. and Coluzzi, M. (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proc. Natl Acad. Sci. 102 (Suppl. 1), 6535–6542.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, R.L. (2002) Evolution of the capacity to evolve. J. Evol. Biol. 15, 911–921.

    Article  Google Scholar 

  • Cavalier-Smith, T. (2004) Only six kingdoms of life. Proc. Roy. Soc. Lond. B 271, 1251–1262.

    Article  CAS  Google Scholar 

  • Changizi, M.A., McDannald, M.A. and Widders, D. (2002) Scaling of differentiation in networks: nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos. J. Theor. Biol. 218, 215–237.

    Article  PubMed  CAS  Google Scholar 

  • Claverie, J.-M. (2001) What if there are only 30 000 human genes? Science 291, 1255–1257.

    Article  PubMed  CAS  Google Scholar 

  • Drake, L.A., Choi1, K.-H., Ruiz, G.M. and Dobbs, F.C. (2001) Global redistribution of bacterioplankton and virioplankton communities. Biol. Invasions 3, 193–199.

    Article  Google Scholar 

  • Dupre, J. (2002) Hidden treasure in the Linnean hierarchy. Biology and Philosophy 17, 423–433.

    Article  Google Scholar 

  • Dobzhansky, T. (1937) Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Eldredge, N. and Salthe, S.N. (1984) Hierarchy and evolution. Oxford Surv. Evol. Biol. 1, 184–208.

    Google Scholar 

  • Ereshefsky, M. (2001) The poverty of the Linnaean hierarchy: a phylosophical study of biological taxonomy. Cambridge University Press, New York.

    Google Scholar 

  • Erwin, D.H. (2000) Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S.J. (2002) The structure of evolutionary theory. Harvard University Press, Cambridge.

    Google Scholar 

  • Haken, H. (1988) Information and Self-organization. A macroscopic Approach to Complex Systems. Second enlarged edition. URSS, Moskwa, Russian translation, 2000.

    Google Scholar 

  • Harrison, R.G. (1990) Hybrid zones: windows on evolutionary process. Oxford Surv. Evol. Biol. 7, 69–128.

    Google Scholar 

  • Hatcher, B.G. (1997) Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs 16(Suppl.), S77–S91.

    Article  Google Scholar 

  • Hey, J. (2001) The mind of the species problem. Trends Ecol. Evol. 16, 326–329.

    Article  PubMed  Google Scholar 

  • Honma, N., Abe, K., Sato, M. and Takeda, H. (1998) Adaptive evolution of holon networks by an autonomous decentralized method. Appl. Math. Comp.. 91, 43–61.

    Article  Google Scholar 

  • Hutchinson, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O. and Venter, J.C. (1999) Global transposon mutagenesis and a minimal mycoplasma genome. Science 286, 2165–2169.

    Article  Google Scholar 

  • Koestler, A. (1967) The Ghost in the Machine. Arkana. The Penguin Group, London.

    Google Scholar 

  • Korn, R.W. (2002) Biological hierarchies, their birth, death and evolution by natural selection. Biol. Phil. 17, 199–221.

    Article  Google Scholar 

  • Korn, R.W. (2005) The Emergence Principle in Biological Hierarchies. Biol. Phil. 20, 137–151.

    Article  Google Scholar 

  • Kozo-Poljansky, B.M. (1925) New Principle in Biology. Studies on the Symbiogenetic Theory. Voronesh (in Russian).

    Google Scholar 

  • Kurland, C.G., Collins, L.J. and Penny, D. (2006) Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Mayden, R.L. (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: M.F. Claridge et al. (Eds), Species: the Units of Biodiversity. Chapman & Hall, London, pp. 381–424.

    Google Scholar 

  • Mayr, E. (1982) The Growth of the Biological Thought. Harvard University Press, Belknap.

    Google Scholar 

  • Mayr, E. and Provine, W.B. (1980) The Evolutionary Synthesis. Harvard University Press, Cambridge.

    Google Scholar 

  • McShea, D.W. (2001) The minor transitions in hierarchical evolution and the question of a directional bias. J. Evol. Biol. 14, 502–518.

    Article  Google Scholar 

  • McShea, D.W. (2004) A Revised Darwinism. Biol. Phil. 19, 45–53.

    Article  Google Scholar 

  • McShea, D.W. and Changizi, M.A. (2003) Three puzzles in hierarchical evolution. Integr. Comp. Biol. 43, 74–81.

    Article  Google Scholar 

  • Michod, R.E. (1997) Cooperation and conflict in the evolution of individuality. 1. Multilevel selection of the organism. Am. Naturalist 149, 607–645.

    Google Scholar 

  • Michod, R.E. and Herron, M.D. (2006) Cooperation and conflict during evolutionary transitions in individuality. J. Evol. Biol. 19, 1406–1409.

    Article  PubMed  Google Scholar 

  • Noda, T., Sagara, H., Yen, A., Takada, A., Kida, H., Cheng, R.H. and Kawaoka, Y. (2006) Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439, 490–492.

    Article  PubMed  CAS  Google Scholar 

  • Oltvai, Z.N. and Barabási, A.-L. (2002) Life's complexity pyramid. Science 298, 763–764.

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko, M.V., Makarova, K.S., Wolf, Y.I., Rogozin, I.B. and Koonin, E.V. (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol. 4, R55.

    Article  PubMed  Google Scholar 

  • Pattee, H.H. (1970) The problem of biological hierarchy. In: C.H. Waddington (Ed.), Towards a Theoretical Biology, Edinburgh University Press, Edinburgh, Vol. 3, pp. 117–136.

    Google Scholar 

  • Pattee, H.H. (1995) Evolving self-reference: matter, symbols, and semantic closure. Comm. Cogn.-Artif. Intell. 12, 9–27.

    Google Scholar 

  • Poli, R. (2001) The basic problem of the theory of levels of reality. Axiomathes 12, 261–283.

    Article  Google Scholar 

  • Rivera, M.C. and Lake, J.A. (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, L.M. (2001) Evolution with material symbol systems. Biosystems 60, 95–121.

    Article  PubMed  CAS  Google Scholar 

  • Salthe, S.N. (2004) The spontaneous origin of new levels in a scalar hierarchy. Entropy 6, 327–324.

    Article  Google Scholar 

  • Santelices, B. (2004) Mosaicism and chimerism as components of intraorganismal genetic heterogeneity. J. Evol. Biol. 17, 1187–1188.

    Article  PubMed  CAS  Google Scholar 

  • Schoof, H., Zaccaria, P., Gundlach, H., Lemcke, K., Rudd, S., Kolesov, G., Arnold, R., Mewes, H.W. and Mayer, K.F. (2002) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucl. Acids Res. 30, 91–93.

    Article  PubMed  CAS  Google Scholar 

  • Schwendener, S. (1869) Die Algentypen der Flechtengonidien. Basel.

    Google Scholar 

  • Simon, H.A. (1962) The architecture of complexity: Hierarchic Systems. Proc. Am. Phil. Soc. 106, 467–482.

    Google Scholar 

  • Simonson, A.B., Servin, J.A., Skophammer, R.G., Herbold, C.W., Rivera, M.C. and Lake, J.A. (2005) Decoding the genomic tree of life. Proc. Natl Acad. Sci. 102(Suppl. 1), 6608–6613.

    Article  PubMed  CAS  Google Scholar 

  • Sites, J.W. and Marshall, J.C. (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol. Evol. 18, 462–470.

    Article  Google Scholar 

  • Smith, J.M. and Szathmáry, E. (1995) The Major Transitions in Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Stebbins, G.L. (1950) Variation and Evolution in Plants. Columbia University Press, New York.

    Google Scholar 

  • Suhre, K., Audic, S. and Claverie, J.M. (2005) Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc. Natl Acad. Sci. 102, 14689–14693.

    Article  PubMed  CAS  Google Scholar 

  • Turchin, V. (1977) The Phenomenon of Science. A cybernetic approach to human evolution. Columbia University Press, New York. Russian translation, 1993.

    Google Scholar 

  • Valentine, J.W. (2000) Two genomic paths to the evolution of complexity in bodyplans. Paleobiology 26, 513–519.

    Article  Google Scholar 

  • Valentine, J.W. (2003) Architectures of biological complexity. Integr. Comp. Biol. 43, 99–103.

    Article  Google Scholar 

  • Valentine, J.W. and May, C.L. (1996) Hierarchies in biology and paleontology. Paleobiology 22, 23–33.

    Google Scholar 

  • Vorontsov, N.N. (1999) The Development of Evolution Idea in Biology. Progress-Traditsia-Press, Moscow.

    Google Scholar 

  • Woese, C. (1998) The universal ancestor. Proc. Natl Acad. Sci. 95, 6854–6859.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (2002) On the evolution of cells. Proc. Natl Acad. Sci. 99, 8742–8747.

    Article  PubMed  CAS  Google Scholar 

  • Wommack, K.E. and Colwell, R.R. (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J. and David, J.L. (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol. Modell. 153, 7–26.

    Article  Google Scholar 

  • Zimmer, C. (2006) Did DNA come from viruses? Science 312, 870.

    Article  PubMed  CAS  Google Scholar 

  • Zhuravlev, Yu.N. (2002) Two rules of distribution of amino acids in the code table indicate chimeric nature of the genetic code. Dokl. Biochem. Biophys. 383, 85–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yu.N., Z., V.A., A. (2008). Hierarchical Scale-Free Representation of Biological Realm—Its Origin and Evolution. In: Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G. (eds) Biosphere Origin and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68656-1_5

Download citation

Publish with us

Policies and ethics