Skip to main content

Approaches to the Resolution of Contradictions Between Phylogenetic Systems Based on Paleontological and Molecular Data

  • Chapter
Biosphere Origin and Evolution

Abstract

Essential differences between molecular and morphofunctional characteristics as sources of information about evolutionary development are discussed. Global historical geography of terrestrial vertebrates is considered as a source of information on the basic events in mammalian phylogeny and on the dates of emergence of certain lineages. It is emphasized that some aspects of zoogeographical reconstructions are supported by new data of the fossil record and comparative molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnason, U. and Janke, A. (1996) Mitogenomic analyses of eutherian relationships. Cytogenet. Gen. Res. 96, 20–32.

    Article  Google Scholar 

  • Berman, D.I., Derenko, M.V., Malyarchuk, B.A., Grzybowski, T., Kryukov, A.P. and Miscicka-Sliwka, D. (2005) Intraspecific genetic differentiation of the Siberian Newt (@Salamandrella keyserlingii,@ Amphibia, Caudata) and the cryptic species @S. schrenckii@ from southeastern Russia. Zool. Zh., 84(11), 1–15.

    Google Scholar 

  • Butler, P.M. (1956a) The skull of Ictopsand the classification of the Insectivora. Proc. Zool. Soc. London, Ser. B 126, 453–481.

    Google Scholar 

  • Carroll, R.L. (1988) Vertebrate Paleontology and Evolution. Freeman, New York.

    Google Scholar 

  • Chetverikov, S.S. (1926) On certain points of the evolutionary process from the point of view of modern genetics. Zh. Eksp. Biol., Ser. A. 2, 3–54.

    Google Scholar 

  • Chetverikov, S.S. (1983) Problems of General Biology and Genetics (Reminiscences, Research Works, and Lectures.Nauka, Novosibirsk.

    Google Scholar 

  • Easteal, S., Collet, C.C. and Betty, D.J. (1995) The Mammalian Molecular Clock. Springer, Texas.

    Google Scholar 

  • Flynn, J.J., Parrish, M., Rakotosamimanana, B., Simpson, W.F. and Wyss, A.R. (1999) A Middle Jurassic mammal from Madagascar. Nature 401, 57–60.

    Article  CAS  Google Scholar 

  • Hasegawa, M., Thorne, J.L. and Kishino H. (2003) Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes Genet. Syst. 78, 267–283.

    Article  PubMed  CAS  Google Scholar 

  • Hooker, J.J. (1992) An additional record of a placental mammals (Order Astrapotheria) from the Eocene of West Antarctica. Antarct. Sci. 4(1), 107–108.

    Google Scholar 

  • Huchon, D., Madsen, O., Sibbald, M., Ament, K., Stanhope, M.J., Catzeflis, F., Jong, W. and Douzery, E.J.P. (2002) Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19(7), 1053–1065.

    PubMed  CAS  Google Scholar 

  • Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J.R., Zhang, J.-P. and Georgi, J.A. (2002) The earliest known eutherian mammal. Nature 416, 816–822.

    Article  PubMed  CAS  Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1980) On historical zoogeography of terrestrial tetrapods of the terminal Paleozoic and Early Mesozoic. In: Paleontology and Stratigraphy. Nauka, Moscow, pp. 93–102.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1981) Intercontinental contacts of terrestrial tetrapods and resolution of the problem of the Scottish Elgin Fauna. In: Life on Ancient Continents: Formation and Development. Nauka, Leningrad, pp. 124–133.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1982) Historical zoogeography of mammals. In: Mammals of the USSR: III Congress of the All-Union Theriological Society, Moscow, Vol. 1, p. 82.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1983) The position of Central Asia in the zoogeographical history of the Mesozoic. In: Extinct Reptiles of Mongolia. Nauka, Moscow, pp. 6–44.

    Google Scholar 

  • Kalandadze N.N. and Rautian A.S. (1991) Late Triassic zoogeography and reconstruction of the terrestrial tetrapod fauna of North Africa. Paleontol. J. 25(1), 1–12.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1992) Mammal system and historical zoogeography. In: Phylogenetics of Mammals. Mosk. Gos. Univ., Moscow, pp. 44–152.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1993a) Jurassic ecological crisis in terrestrial tetrapod communities and the heuristic model for the conjugated evolution of the biota and community. In: Problems of Pre-Anthropogene Evolution of the Biosphere. Nauka, Moscow, pp. 60–95.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1993b) Symptoms of Ecological Crises. Stratigr. Geol. Correlation 1(5), 473–478.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1995a) Interpreted geochronological schedule ("calendar”) of the major events in the phylocenogenesis of community (taxocene) of terrestrial vertebrates: Part 1. In: Ecosystem Rearrangements and Evolution of the Biosphere. Paleontol. Inst. RAS, Moscow, Vol. 2, pp. 8–11.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1995b) Interpreted geochronological schedule ("calendar”) of the major events in the phylocenogenesis of community (taxocene) of terrestrial vertebrates: Part 2. In: Ecosystem Rearrangements and Evolution of the Biosphere. Paleontol. Inst. RAS, Moscow, Vol. 2, pp. 12–15.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1995c) Physiology prerequisites for the utilization of plant resource by land vertebrates. Paleontol. J. 29(4), s179–185.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1997) Historical zoogeography of terrestrial tetrapods and a new method of global paleogeographical reconstruction. In: Evolution of the Biosphere. Queen Victoria Museum and Art Gallery Publ., Launceston, pp. 95–98 (Records of the Queen Victoria Museum and Art Gallery, Launceston. Vol. 104).

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1998a) Interpreted geochronological schedule (“calendar”) of the major events in the phylocenogenesis of community (taxocene) of terrestrial vertebrates: Part 3. In: Ecosystem Rearrangements and Evolution of the Biosphere. Paleontol. Inst. RAS, Moscow, Vol. 3, pp. 38–41.

    Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1998b) Interpreted geochronological schedule ("calendar”) of the major events in the phylocenogenesis of community (taxocene) of terrestrial vertebrates: Part 4. In: Ecosystem Rearrangements and Evolution of the Biosphere. Paleontol. Inst. RAS, Moscow, Vol. 3, pp. 42–46.

    Google Scholar 

  • Kumar, S. and Hedges, S.B. (1998) A molecular timescale for vertebrate evolution. Nature 392, 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, O., Scally, M., Douady, C.J., Kao, D.J., Debry, R.W., Adkins, R., Amrine, H., Stanhope, M.J., de Jong, W.W. and Springer M.S. (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, W.J., Eizirik, E., O’Brien, S.J., Madsen, O., Scally, M., Douady, C., Teeling, E., Ryder, O.A., Stanhope, M.J., de Jong, W.W. and Springer, M.S. (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E. (1966) Community evolution and the origin of mammals. Ecology 47(2), 291–302.

    Article  Google Scholar 

  • Penny, D., Haseqawa, M., Waddell, P.J. and Hendy, M.D. (1999) Mammalian evolution: timing and implications from using log determinant transform for proteins of differing amino acid composition. Syst. Biol. 48, 76–93.

    Article  PubMed  CAS  Google Scholar 

  • Rasnitsyn, A.P. (1988) Phylogenetics. In: Modern Paleontology. Nedra, Moscow, Vol. 1, pp. 480–497.

    Google Scholar 

  • Rasnitsyn, A.P. (2002) Evolutionary process and methodology of systematics. Tr. Ross. Entomol. Ob-va 73, 1–107.

    Google Scholar 

  • Rasnitsyn, A.P., (2006) Ontology of evolution and methodology of taxonomy. Paleontol. J. 40(6 Suppl.), 679–737.

    Article  Google Scholar 

  • Rautian, G.S. and Dubrovo, I.A. (2001) The study of mammoth DNA. In: Mammoth and Its Environment. Geos, Moscow, pp. 112–123.

    Google Scholar 

  • Rautian, G.S. and Dubrovo, I.A. (2003) Data on DNA give evidence for parallel development in mammoths and elephants. Deinsea 9, 381–394.

    Google Scholar 

  • Rauhut, O.W.M., Martin, T., Ortiz-Jaureguizar, E. and Puerta, P. (2002) A Jurassic mammal from South America. Nature 416, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Rautian G.S., Rossina V.V. and Rautian A.S. (2006) Approaches to the resolution of contradictions between phylogenetic reconstructions based on morphofunctional and genetic data. Paleontol. J. 40, 508–523.

    Article  Google Scholar 

  • Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L., van Klaveren, N. (1999) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec. Queen Victoria Mus. 106, 1–35.

    Google Scholar 

  • Romer, A.Sh. and Price, L.I. (1940) Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap. 28, 1–538.

    Google Scholar 

  • Scally, M., Madsen, O., Douady, C.J., de Jong, W.W., Stanhope, M.J. and Springer M.S. (2002) Molecular evidence for the major clades of placental mammals. J. Mammal. Evol. 8(4), 239–277.

    Article  Google Scholar 

  • Schmalhausen, I.I. (1938) Organism As the Whole in Individual and Historical Development.Akad. Nauk SSSR, Moscow.

    Google Scholar 

  • Schmalhausen, I.I. (1949) Factors of Evolution: Theory of Stabilizing Selection. Blakiston, Toronto.

    Google Scholar 

  • Simpson, G.G. (1980) Splendid Isolation.Yale Univ. Press, New Haven.

    Google Scholar 

  • Skarlato, O.A. and Starobogatov, Ya.I. (1974) Phylogenetics and principles of construction of natural system. In: Theoretical Questions of Taxonomy and Phylogeny of Animals. Nauka, Leningrad, pp. 30–46.

    Google Scholar 

  • Springer, M.S., Murphy, W.J., Eizirik, E., and O’Brien, S.J. (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. PNAS 100(3), 1056–1061.

    Google Scholar 

  • Timofeev-Resovsky, N.V. (1958) Microevolution: elementary evolutionary events, materials, and factors of the evolutionary process. Bot. Zh. 43(3), 317–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rautian, G.S., Rautian, A.S., Kalandadze, N.N. (2008). Approaches to the Resolution of Contradictions Between Phylogenetic Systems Based on Paleontological and Molecular Data. In: Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G. (eds) Biosphere Origin and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68656-1_22

Download citation

Publish with us

Policies and ethics