Skip to main content

Evolution by Gene Duplications: from the Origin of the Genetic Code to the Human Genome

  • Chapter
Biosphere Origin and Evolution

Evolution ab simplecioribus ad complexiora is based on duplications. In a working live system novelties almost never emerge by chance. New genes, exons, or even smaller functional units typically originate with minute changes in the duplicate(s) of preexisting sequences. Extant gene and protein sequences often harbor the periodicity that unambiguously points to their duplicationbased origins (Ohno, 1987, 1988). Here we consider two fundamental paradoxes associated with duplications. The first paradox dates back to the origin of encoded protein synthesis, and it can be explained away by what arguably was the single most important duplication event in the history of life, the duplication of a presumable short precursor of a transfer RNA that shaped it into a major adaptor of the genetic code. The second paradox belongs to the realm of already quite complex and advanced life; it concerns survival of gene duplicates per se and appears to be most pronounced in the human genome. In a sense, the entire history of life (as we see it presently) can be said to lie in between the above two series of events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Aladjem, M.I., Rodewald, L.W., Kolman, J.L. and Wahl, G.M. (1998) Genetic dissection of a mammalian replicator in the human beta-globin locus. Science 281, 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G. (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241, 3–17.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K.E., Amoils, S., Horn, J.M., Buckle, V.J. and Higgs, D.R. (2001) Expression of α- and β-globin genes occurs within different nuclear domains in haemopoetic cells. Nature Cell Biol. 3, 602–606.

    Article  PubMed  CAS  Google Scholar 

  • Caporaso, J.G., Yarus, M. and Knight, R. (2005) Error minimization and coding triplet/binding site associations are independent features of the canonical genetic code. J. Mol. Evol. 61, 597–607.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C.W., Jr. and Duax, W.L. (2002) Did tRNA synthetase classes arise on opposite strands of the same gene? Mol. Cell 10, 705–708.

    Article  PubMed  CAS  Google Scholar 

  • Cockell, M. and Gasser, S.M. (1999) Nuclear compartments and gene regulation. Curr. Opin. Genet. Dev. 9, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Conant, G.C. and Wagner, A. (2003) Asymmetric sequence divergence of duplicate genes. Genome Res. 13, 2052–2058.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C. (1968) The origin of the genetic code. J. Mol. Biol. 38, 367–380.

    Article  PubMed  CAS  Google Scholar 

  • De Duve, C. (1988) The second genetic code. Nature 333, 117–118.

    Article  PubMed  Google Scholar 

  • Di Giulio, M. (1992) On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199–214.

    Article  PubMed  Google Scholar 

  • Eriani, G., Delarue, M., Poch, O., Gangloff, J. and Moras, D., (1990) Partition of aminoacyl-tRNA synthetases into two classes based on mutually exclusive sets of conserved motifs. Nature 347, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Fay, J.C. and Wu, C-I. (2001) The neutral theory in the genomic era. Curr. Opin. Genet. Dev. 11, 642–646.

    Article  PubMed  CAS  Google Scholar 

  • Fay, J.C. and Wu, C-I. (2003) Sequence divergence, functional constraint, and selection in protein evolution. Annu. Rev. Genomics Hum. Genet. 4, 213–235.

    Article  PubMed  CAS  Google Scholar 

  • Force, A., Lynch, M., Pickett, B., Amores, A., Yan, Y-l. and Postlethwait, J. (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545.

    PubMed  CAS  Google Scholar 

  • Hahn, M.V. and Wray, G.A. (2002) The G-value paradox. Evol. Dev. 4, 73–75.

    Article  PubMed  Google Scholar 

  • Hou, Y.-M. and Schimmel, P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333, 140–145.

    Article  PubMed  CAS  Google Scholar 

  • Jabbari, K., Rayko, E. and Bernardi, G. (2003) The major shifts of human duplicated genes. Gene 317, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Knight R.D., Freeland S.J. and Landweber L.F. (2001) Rewriting the keyboard: evolvability of the genetic code. Nat. Rev. Genet. 2, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Kuhns, S.T. and Joyce, G.F. (2003) Perfectly complementary nucleic acid enzymes. J. Mol. Evol. 56, 711–717.

    Article  PubMed  CAS  Google Scholar 

  • Levine, M. and Tjian, R. (2003) Transcription regulation and animal diversity. Nature 424, 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. and Conery, J.C. (2000) The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., O’Hely, M., Walsh, B. and Force, A. (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789–1804.

    PubMed  CAS  Google Scholar 

  • Miller, S.L. (1987) Which organic compounds could have occurred on the prebiotic earth. Cold Spring Harbor Symp. Quant. Biol. 52, 17–27.

    PubMed  CAS  Google Scholar 

  • Miyata, T., Miyazawa, S. and Yasunaga, T. (1979) Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236.

    Article  PubMed  CAS  Google Scholar 

  • Mounsey, A., Bauer, P. and Hope, I.A. (2002) Evidence suggesting that a fifth of annotated Caenorhabditis elegans genes may be pseudogenes. Genome Res. 12, 770–775.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication. Springer, Berlin.

    Google Scholar 

  • Ohno, S. (1987) Early genes that were oligomeric repeats generated a number of divergent domains on their own. Proc. Natl Acad. Sci. USA 84, 6486–6490.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1988) On periodicities governing the construction of genes and proteins. Anim. Genet. 19, 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. (1980) Evolution and Variation of Multigene Families. Springer, Berlin.

    Google Scholar 

  • Ophir, R., Itoh, T., Graur, D. and Gojobori, T. (1999) A simple method for estimating the intensity of purifying selection in protein-coding genes. Mol. Biol. Evol. 16, 49–53.

    PubMed  CAS  Google Scholar 

  • Pham, Y., Li, L., Kim, A., Erdogan, O., Weinreb, V., Butterfoss, G.L., Kuhlman, B. and Carter, C.W. Jr. (2007) A minimal Trp RS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol. Cell 25, 851–862.

    Article  PubMed  CAS  Google Scholar 

  • Rideout, W.M., III, Coetzee, G.A., Olumi, A.F. and Jones, P.A. (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249, 1288–1290.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S. and Ohno, S. (1995) Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Orig. Life Evol. Biosph. 25, 565–589.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Ohno, S. (1997) Four primordial modes of tRNA-synthetase recognition, determined by the (G,C) operational code. Proc. Natl Acad. Sci. USA 94, 5183–5188.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Parkhomchuk, D.V. (2004) Position-associated GC asymmetry of gene duplicates. J. Mol. Evol. 59, 372–384.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Riggs, A.D. (2003) Epigenetic silencing may aid evolution by gene duplication. J. Mol. Evol. 56, 718–729.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (1998) Strand asymmetry of CpG transitions as indicator of G1 phase-dependent origin of multiple tumorigenic p53 mutations in stem cells. Proc. Natl Acad. Sci. USA 95, 11927–11932.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (2005) Origins and selection of p53 mutations in lung carcinogenesis. Semin. Cancer Biol. 15, 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (2006a) Origin of the genetic code: first aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol. 25, 365–375.

    Article  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (2006b) Partitioning of aminoacyl-tRNA synthetases in two classes could have been encoded in a strand-symmetric RNA world. DNA Cell Biol. 25, 617–626.

    Article  CAS  Google Scholar 

  • Rodin, S., Rodin, A. and Ohno, S. (1996) The presence of codon–anticodon pairs in the acceptor stem of tRNAs. Proc. Natl Acad. Sci. USA 93, 4537–3542.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N., Holmquist, G.P. and Rodin, A.S. (1998) CpG transition strand asymmetry and hitch-hiking mutations as measures of tumorigenic selection in shaping the p53 mutation spectrum. Int. J. Mol. Med. 1, 191–199.

    PubMed  CAS  Google Scholar 

  • Rodin, S.N., Rodin, A.S., Juhasz, A. and Holmquist, G.P. (2002) Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions. Mutat. Res. 510, 153–168.

    PubMed  CAS  Google Scholar 

  • Rodin, S.N., Parkhomchuk, D.V., Rodin, A.S., Holmquist, G.P. and Riggs, A.D. (2005a) Repositioning-dependent fate of duplicate genes. DNA Cell Biol. 24, 529–542.

    Article  CAS  Google Scholar 

  • Rodin, S.N., Parkhomchuk, D.V. and Riggs, A. D. (2005b) Epigenetic changes and repositioning determine the evolutionary fate of duplicated genes. Biochemistry (Moscow) 70, 559–567.

    Article  CAS  Google Scholar 

  • Schimmel, P. and Beebe, K. (2006) Aminoacyl tRNA synthetases: from the RNA world to the theater of proteins. In: R.F. Gesteland, T.R. Cech and J.F. Atkins (Eds) The RNA World. Cold Spring Harbor Laboratory Press, New York, pp. 227–255.

    Google Scholar 

  • Schimmel, P., Giege, R., Moras, D. and Yokoyama S. (1993) An operational RNA code for amino acids and possible relation to genetic code. Proc. Natl Acad. Sci. USA 90, 8763–8768.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, M. (1982) Molecular basis for the genetic code. J. Mol. Evol. 18, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Simon, I., Tenzen, T., Mostoslavsky, R., Fibach, E., Lande, L., Milot, E., Gribnau, J., Grosveld, F., Fraser, P. and Cedar, H. (2001) Developmental regulation of DNA replication timing at the human beta globin locus. EMBO J., 20, 6150–6157.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M. and Vassilenko, K.S. (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucl. Acids Res. 1(33), D139–D140.

    Google Scholar 

  • Szathmary, E. (1991) Codon swapping as a possible evolutionary mechanism. J. Mol. Evol. 32, 178–182.

    Article  CAS  Google Scholar 

  • Szathmary, E. (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 15, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, A.M. and Maizels, N. (1987) TRNA-like structures tag the 3’ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc. Natl Acad. Sci. USA 84, 7383–7387.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, A.M. and Maizels, N. (1999) The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication and clues regarding the origin of protein synthesis. Biol. Bull. 196, 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, K.M. and Buchanan, A.V. (2005) “The” genetic code? Evol. Anthropol. 14, 6–11.

    Article  Google Scholar 

  • Woese, C.R. (1965) On the evolution of the genetic code. Proc. Natl. Acad Sci. USA 54, 1546–1552.

    Article  PubMed  CAS  Google Scholar 

  • Yang, A.S., Jones, P.A., Shibata, A. (1996) The mutational burden of 5-methylcytosine. In: V.E.A. Russo, R.A. Martienssen, A.D. Riggs (Eds) Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, New York, pp. 77–94.

    Google Scholar 

  • Yarus, M. (1998) Amino acids as RNA ligands: a direct-RNA-template theory for the code’s origin. J. Mol. Evol. 47, 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Yarus, M., Caporaso, J.G. and Knight, R. (2005) Origins of the genetic code: the escaped triplet theory. Annu. Rev. Biochem. 74, 125–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodin, S., Rodin, A. (2008). Evolution by Gene Duplications: from the Origin of the Genetic Code to the Human Genome. In: Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G. (eds) Biosphere Origin and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68656-1_19

Download citation

Publish with us

Policies and ethics