Skip to main content

Visualization of the Silicon Biomineralization in Cyanobacteria, Sponges and Diatoms

  • Chapter
Biosphere Origin and Evolution

Abstract

Organisms of three kingdoms – cyanobacteria, sponges and diatoms – played a key role in the global cycle of silicon at certain moments of formation of the biosphere. At present, only diatoms retain this leading position. Using microscopy techniques, we studied mineralization of Si by these organisms. Analysis of silicateins-proteins, which take part in condensation of silica in sponges – helped to establish phylogeny of sponges of Lake Baikal. The presence of the gene of Silicic Acid Transport protein in chrysophycean algae suggests that this protein was ‘invented’ long before diatoms appeared. Data on biomineralization of Si, analysis of silicic acid transport and of silica-condensing proteins suggest that the biotic pathway of the global Si cycle appeared at an early stage of the evolution and involved cyanobacteria, sponges and some algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alverson A.J., Jansen R.K., Theriot E.C. (2007) Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution 4(1), 193–210.

    Article  CAS  Google Scholar 

  • Belikov, S.I., Kaluzhnaya, O.V., Schröder, H.C., Krasko, A., Müller, I.M. and Müller, W.E.G. (2005) Expression of silicatein in spicules from the Baikalian sponge Lubomirskia baicalensis. Cell Biol. Int. 29, 943–951.

    Article  PubMed  CAS  Google Scholar 

  • Benning, L.G., Phoenix, V.R., Yee, N. and Konhauser, K.O. (2004) The dynamics of cyanobacterial silicification: an infrared micro-spectroscopic investigation. Geochim. Cosmochim. Acta 68, 743–757.

    Article  CAS  Google Scholar 

  • Blackwell, W.H. and Powell, M.J. (2000) A review of group filiation of the strameopiles, additional approaches to the question. Evol. Theory 12, 49–88.

    Google Scholar 

  • Brümmer, F. (2003) Living inside a glass box—silica in diatoms. In: W.E.G. Müller (Ed.), Silicon Biomineralization. Springer, Berlin, pp. 3–10.

    Google Scholar 

  • Brzesinski, M.A. and Conley, D.J. (1994) Silicon deposition during the cell cycle of T. weissflogii using dual Rhodamine 123 and propidium iodide staining. J. Phycol. 30, 45–55.

    Article  Google Scholar 

  • Canet, C., Prol-Ledesma, R.M., Torres-Alvarado, I., Gilg, H.A., Villanueva, R.E. and Lozano-Santa Cruz, R. (2005) Silica-carbonate stromatolites related to coastal hydrothermal venting in Bahia Concepcion, Baja California Sur, Mexico. Sediment. Geol. 174, 97–113.

    Article  CAS  Google Scholar 

  • Cha, J.N., Shimizu, K., Zhou, Y., Christianssen, S.C., Chmelka, B.F., Stucky, G.D. and Morse, D.E. (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Conway, K.W., Krautter, M., Barrie, J.V., Whitney, F., Thomson, R.E., Reiswig, H., Lehnert, H., Mungov, G. and Bertram, M. (2006) Sponge reefs in the Queen Charlotte Basin, Canada: controls on distribution, growth and development. In: A. Freiwald and J.M. Roberts (Eds), Cold-Water Corals and Ecosystems. Springer, Berlin, pp. 605–621.

    Google Scholar 

  • Cox, E.J. (1999) Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera. J. Phycol. 35, 1297–1312.

    Article  Google Scholar 

  • Cox, E.J. and Kennaway, G.M. (2004) Studies of valve morphogenesis in pennate diatoms: investigating aspects of cell biology in a systematic context. In: M. Poulin (Ed.), Proceedings of the 17th International Diatom symposium. Biopress Ltd, Bristol, pp. 35–48.

    Google Scholar 

  • Drum, R.W. and Pankratz, H.S. (1964) Post mitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res. 10, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Gehling, J.G. and Rigby, J.K. (1996) Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleontol. 70(2), 185–195.

    Google Scholar 

  • Gerasimenko, L.M. and Ushatinskaya, G.T. (2002) Cyanobacteria, cyanobacteria/bacteria associations, mats, biofilms. In: A.Yu. Rozanov (Ed.), Bacterial Paleontology. Paleontological Institute RAS, Moscow, pp. 36–46.

    Google Scholar 

  • Grachev, M.A., Denikina, N.N., Belikov, S.I., Likhoshwai, E.V. (Likhoshway, Ye.V.), Usoltseva, M.V., Tikhonova, I.V., Adelshin, R.V., Kler, S.A. and Shcherbakova (Sherbakova), T.A. (2002) Elements of the active center of silicon transporters in diatoms. Mol. Biol. 36, 535–536.

    Google Scholar 

  • Grachev, M., Sherbakova, T., Masyukova, Yu. and Likhoshway, Ye. (2005) A potential Zink-binding motif in silicic acid transport proteins of diatoms. Diatom Res. 20(2), 409–441.

    Google Scholar 

  • Guillou, L., Chretiennot-Dinet, M.-J., Medlin, L.K., Claustre, H., Loiseaux-de Goër, S. and Vaulot, D. (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol. 35, 368–381.

    Article  Google Scholar 

  • Hazelaar, S., Strate, H.J., Gieskes, W.C. and Vrieling, E.G. (2005) Monitoring rapid valve formation in the pennate diatom Navicula salinarum (Bacillariophyceae). J. Phycol. 41, 354–358.

    Article  Google Scholar 

  • Hildebrand, M. and Wetherbee, R. (2003) Components and control of silicification in Diatoms. In: W.E.G. Müller (Ed.), Silicon Biomineralization. Springer, Berlin, pp. 11–58.

    Google Scholar 

  • Hildebrand, M., Volcani, B.E., Gassmann, W. and Schröder, J.I. (1997) A gene family of silicon transporters. Nature 385, 688–689.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B., Renaut, R.W. and Konhauser, K.O. (2005) Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology 52, 1229–1252.

    CAS  Google Scholar 

  • Kaluzhnaya, O.V., Belikov, S.I., Schröder, H.C., Rothenberger, M., Zapf, S., Kaandorp, J.A., Borejko, A., Müller, I.M. and Müller, W.E.G. (2005a) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies. Naturwissenschaften 92, 128–133.

    Article  CAS  Google Scholar 

  • Kaluzhnaya, O.V., Belikov, S. I., Schröder, H.C., Wiens, M., Giovine, M., Krasko, A., Müller, I.M. and Müller, W.E.G. (2005b) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften 92, 134–138.

    Article  CAS  Google Scholar 

  • Kaluzhnaya, O.V., Belikova, A.S., Podolskaya, E.P., Krasko, A., Müller, W.E.G. and Belikov, S.I. (2007) Silicatein identification of the freshwater sponge Lubomirskia baicalensis. Mol. Biol. 4,554–561.

    Article  CAS  Google Scholar 

  • Knauth, L.P. (2005) Temperature and salinity history of the Precambrian ocean: implication for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69.

    Article  Google Scholar 

  • Knoll, A.H. (1992) The early evolution of eukaryotes: a geological perspective. Science 256, 622–627.

    Article  PubMed  CAS  Google Scholar 

  • Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G. and Head, I.M. (2001) Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48, 415–433.

    Article  CAS  Google Scholar 

  • Krasko, A., Batel, R., Schröder, H.C., Müller, I.M. and Müller, W.E.G. (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur. J. Biochem. 267, 4878–4887.

    Article  PubMed  CAS  Google Scholar 

  • Kröger, N., Deutzmann, R., Bergsdorf, C. and Sumper, M. (2000) Species-specific polyamines from diatoms control silica morphology. Proc. Natl Acad. Sci. USA 97, 14133–14138.

    Article  PubMed  Google Scholar 

  • Li, C.-W., Chu, S. and Lee, M. (1989) Characterizing the silica deposition vesicle of diatoms. Protoplasma 151, 158–163.

    Article  Google Scholar 

  • Likhoshway, Ye.V., Sorokovikova, E.G., Belkova, N.L., Belykh, O.I., Titov, A.T., Sakirko, M.V. and Parfenova, V.V. (2006a) Silicon mineralization in the culture of cyanobacteria from hot springs. Dokl. Biol. Sci. 407, 201–205.

    Article  Google Scholar 

  • Likhoshway, Ye.V., Masyukova, Yu.A., Sherbakova, T.A., Petrova, D.P. and Grachev, M.A. (2006b) Detection of the gene responsible for silicic acid transport in Chrysophycean algae. Dokl. Biol. Sci. 408, 256–260.

    Article  Google Scholar 

  • Mann, D.G. and Marchant, H.J. (1989) The origins of the diatom and its life cycle In: J.C. Green, B.S.C. Leadbeater and W.L. Diver (Eds) The Chromophyte Algae: Problems and Perspectives. Clarendon Press, Oxford, pp. 307–323.

    Google Scholar 

  • Medlin, L.K. and Kaczmarska, I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43, 1–29.

    Google Scholar 

  • Müller, W.E.G., Kaluzhnaya, O.V., Belikov, S.I., Rothenberger, M., Schröder, H.C., Reiber, A., Kaandorp, J.A., Manz, B., Mietchen, D. and Volke, F. (2006) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J. Struct. Biol. 153, 31–41.

    Article  PubMed  Google Scholar 

  • Nikolaev, V.A., Harwood, D.M. and Samsonov, N.I. (2001) Early Cretaceons Diatoms. Nauka, St Petersburg.

    Google Scholar 

  • Phoenix, V.R., Konhauser, K.O. and Adams, D.G. (2000) Cyanobacterial viability during hydrothermal biomineralization. Chem. Geol. 169, 329–338.

    Article  CAS  Google Scholar 

  • Pickett-Heaps, J.D., Schmid, A.-M.M. and Edgar, L. (1990) The cell biology of diatom wall morphogenesis. In: F.E. Round and D.J. Chapman (Eds.) Progress in Phycological Research. Biopress, Bristol, pp. 2–168.

    Google Scholar 

  • Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R.F., Brzezinski, M.A., DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G., François, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D.M. and Quéguiner, B. (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet. Change 26, 317–365.

    Google Scholar 

  • Reimann, B.E.F. (1964) Deposition of silica inside a diatom cell. Exp. Cell. Res. 34, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Renaut, R.W., Jones, B., Tiercelin, J.J. and Tarits, C. (2002) Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley. Sediment. Geol. 148, 235–257.

    Article  CAS  Google Scholar 

  • Round, F.E. and Crawford, R.M. (1981) The lines of evolution of Bacillariophyta. I. Origin. Proc. R. Soc. Lond. B 211, 237–260.

    Article  Google Scholar 

  • Round, F.E. and Crawford, R.M. (1984) The lines of evolution of Bacillariophyta. II. Origin. Proc. R. Soc. Lond. B 221, 169–188.

    Google Scholar 

  • Round, F.E., Crawford, R.M. and Mann D.G. (1990) The Diatoms Biology and Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rozanov, A.Yu. (2006) Precambrian geobiology. Paleontol. J. 40(4), 434–443.

    Article  Google Scholar 

  • Schmid, A.-M.M. and Schulz, D. (1979) Wall morphogenesis in diatoms: depositions of silica by cytoplasmic vesicles. Protoplasma 100, 268–288.

    Article  Google Scholar 

  • Sergeev, V.N., Gerasimenko, L.M. and Zavarzin, G.A. (2002) The proterozoic history and present state of cyanobacteria. Microbiology 71, 623–637.

    Article  CAS  Google Scholar 

  • Sherbakova, T.A, Masyukova, Yu.A., Safonova, T.A., Petrova, D.P., Vereshagin, A.L., Minaeva, T.V., Adelshin, R.A., Triboy, T.I., Stonik, I.I., Aizdaitcher, N.A., Kozlov, M.V., Likhoshway, E.(Ye.)V. and Grachev, M.A. (2005) Conservative motif CMLD in silicic acid transport proteins of diatom algae. Mol. Biol. 39, 269–280.

    Article  CAS  Google Scholar 

  • Shimizu, K., Cha, J, Stucky, G.D. and Morse, D.E. (1998) Silicatein alpha: cathepsin l-like protein in sponge biosilica. Proc. Natl Acad. Sci. USA 95, 6234–6238.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, K., Del Amo, Y., Brzezinski, M.A., Stucky, G.D. and Morse, D.E. (2001) A novel silica tracer for biological silification studies. Chem. Biol. 8, 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  • Sims, P.A., Mann, D.G. and Medlin L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45(4), 361–402.

    Article  Google Scholar 

  • Thamatrakoln, K. and Hildebrand, M. (2005) Approaches for functional characterization of diatom silicic acid transporters. J. Nanosci. Nanotechnol. 5, 1–9.

    Article  CAS  Google Scholar 

  • Thamatrakoln, K., Alverson, A.J. and Hildebrand, M. (2006). Comparative sequence analysis of diatom silicon transporters: toward a mechanistic model of silicon transport. J. Phycol. 42, 822–834.

    Article  CAS  Google Scholar 

  • Uriz, M.J., Turon, X. and Becerro, M.A. (2000) Silica deposition in Demospongiae: spiculogenesis in Crambe crambe. Cell. Tissue Res. 301, 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Uriz, M.J., Turon, X., Becerro, M.A. and Agell, G. (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc. Res. Technol. 62, 279–299.

    Article  CAS  Google Scholar 

  • Weaver, J.C. and Morse, D.E. (2003) Molecular biology of Demosponge axial filaments and their roles in biosilicification. Microsc. Res. Technol. 62, 356–367.

    Article  CAS  Google Scholar 

  • Wiens, M., Belikov, S.I., Kaluzhnaya, O.V., Krasko, A., Schröder H.C., Perovic-Ottstadt, S. and Müller, W.E.G. (2006) Molecular control of serial module formation along the apical–basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev. Genes Evol. 216(5), 229–242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Likhoshway, Y. et al. (2008). Visualization of the Silicon Biomineralization in Cyanobacteria, Sponges and Diatoms. In: Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G. (eds) Biosphere Origin and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68656-1_16

Download citation

Publish with us

Policies and ethics