Visualization of the Silicon Biomineralization in Cyanobacteria, Sponges and Diatoms

  • Ye.V. Likhoshway
  • E.G. Sorokovikova
  • O.I. Belykh
  • O.L.V. Kaluzhnaya
  • S.I. Belikov
  • Ye.D. Bedoshvili
  • O.K.V. Kaluzhnaya
  • Ju.A. Masyukova
  • T.A. Sherbakova


Organisms of three kingdoms – cyanobacteria, sponges and diatoms – played a key role in the global cycle of silicon at certain moments of formation of the biosphere. At present, only diatoms retain this leading position. Using microscopy techniques, we studied mineralization of Si by these organisms. Analysis of silicateins-proteins, which take part in condensation of silica in sponges – helped to establish phylogeny of sponges of Lake Baikal. The presence of the gene of Silicic Acid Transport protein in chrysophycean algae suggests that this protein was ‘invented’ long before diatoms appeared. Data on biomineralization of Si, analysis of silicic acid transport and of silica-condensing proteins suggest that the biotic pathway of the global Si cycle appeared at an early stage of the evolution and involved cyanobacteria, sponges and some algae.


Silicic Acid Marine Sponge Thermal Spring Siliceous Sponge Freshwater Sponge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alverson A.J., Jansen R.K., Theriot E.C. (2007) Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution 4(1), 193–210.CrossRefGoogle Scholar
  2. Belikov, S.I., Kaluzhnaya, O.V., Schröder, H.C., Krasko, A., Müller, I.M. and Müller, W.E.G. (2005) Expression of silicatein in spicules from the Baikalian sponge Lubomirskia baicalensis. Cell Biol. Int. 29, 943–951.PubMedCrossRefGoogle Scholar
  3. Benning, L.G., Phoenix, V.R., Yee, N. and Konhauser, K.O. (2004) The dynamics of cyanobacterial silicification: an infrared micro-spectroscopic investigation. Geochim. Cosmochim. Acta 68, 743–757.CrossRefGoogle Scholar
  4. Blackwell, W.H. and Powell, M.J. (2000) A review of group filiation of the strameopiles, additional approaches to the question. Evol. Theory 12, 49–88.Google Scholar
  5. Brümmer, F. (2003) Living inside a glass box—silica in diatoms. In: W.E.G. Müller (Ed.), Silicon Biomineralization. Springer, Berlin, pp. 3–10.Google Scholar
  6. Brzesinski, M.A. and Conley, D.J. (1994) Silicon deposition during the cell cycle of T. weissflogii using dual Rhodamine 123 and propidium iodide staining. J. Phycol. 30, 45–55.CrossRefGoogle Scholar
  7. Canet, C., Prol-Ledesma, R.M., Torres-Alvarado, I., Gilg, H.A., Villanueva, R.E. and Lozano-Santa Cruz, R. (2005) Silica-carbonate stromatolites related to coastal hydrothermal venting in Bahia Concepcion, Baja California Sur, Mexico. Sediment. Geol. 174, 97–113.CrossRefGoogle Scholar
  8. Cha, J.N., Shimizu, K., Zhou, Y., Christianssen, S.C., Chmelka, B.F., Stucky, G.D. and Morse, D.E. (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365.PubMedCrossRefGoogle Scholar
  9. Conway, K.W., Krautter, M., Barrie, J.V., Whitney, F., Thomson, R.E., Reiswig, H., Lehnert, H., Mungov, G. and Bertram, M. (2006) Sponge reefs in the Queen Charlotte Basin, Canada: controls on distribution, growth and development. In: A. Freiwald and J.M. Roberts (Eds), Cold-Water Corals and Ecosystems. Springer, Berlin, pp. 605–621.Google Scholar
  10. Cox, E.J. (1999) Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera. J. Phycol. 35, 1297–1312.CrossRefGoogle Scholar
  11. Cox, E.J. and Kennaway, G.M. (2004) Studies of valve morphogenesis in pennate diatoms: investigating aspects of cell biology in a systematic context. In: M. Poulin (Ed.), Proceedings of the 17th International Diatom symposium. Biopress Ltd, Bristol, pp. 35–48.Google Scholar
  12. Drum, R.W. and Pankratz, H.S. (1964) Post mitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res. 10, 217–223.PubMedCrossRefGoogle Scholar
  13. Gehling, J.G. and Rigby, J.K. (1996) Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleontol. 70(2), 185–195.Google Scholar
  14. Gerasimenko, L.M. and Ushatinskaya, G.T. (2002) Cyanobacteria, cyanobacteria/bacteria associations, mats, biofilms. In: A.Yu. Rozanov (Ed.), Bacterial Paleontology. Paleontological Institute RAS, Moscow, pp. 36–46.Google Scholar
  15. Grachev, M.A., Denikina, N.N., Belikov, S.I., Likhoshwai, E.V. (Likhoshway, Ye.V.), Usoltseva, M.V., Tikhonova, I.V., Adelshin, R.V., Kler, S.A. and Shcherbakova (Sherbakova), T.A. (2002) Elements of the active center of silicon transporters in diatoms. Mol. Biol. 36, 535–536.Google Scholar
  16. Grachev, M., Sherbakova, T., Masyukova, Yu. and Likhoshway, Ye. (2005) A potential Zink-binding motif in silicic acid transport proteins of diatoms. Diatom Res. 20(2), 409–441.Google Scholar
  17. Guillou, L., Chretiennot-Dinet, M.-J., Medlin, L.K., Claustre, H., Loiseaux-de Goër, S. and Vaulot, D. (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol. 35, 368–381.CrossRefGoogle Scholar
  18. Hazelaar, S., Strate, H.J., Gieskes, W.C. and Vrieling, E.G. (2005) Monitoring rapid valve formation in the pennate diatom Navicula salinarum (Bacillariophyceae). J. Phycol. 41, 354–358.CrossRefGoogle Scholar
  19. Hildebrand, M. and Wetherbee, R. (2003) Components and control of silicification in Diatoms. In: W.E.G. Müller (Ed.), Silicon Biomineralization. Springer, Berlin, pp. 11–58.Google Scholar
  20. Hildebrand, M., Volcani, B.E., Gassmann, W. and Schröder, J.I. (1997) A gene family of silicon transporters. Nature 385, 688–689.PubMedCrossRefGoogle Scholar
  21. Jones, B., Renaut, R.W. and Konhauser, K.O. (2005) Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology 52, 1229–1252.Google Scholar
  22. Kaluzhnaya, O.V., Belikov, S.I., Schröder, H.C., Rothenberger, M., Zapf, S., Kaandorp, J.A., Borejko, A., Müller, I.M. and Müller, W.E.G. (2005a) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies. Naturwissenschaften 92, 128–133.CrossRefGoogle Scholar
  23. Kaluzhnaya, O.V., Belikov, S. I., Schröder, H.C., Wiens, M., Giovine, M., Krasko, A., Müller, I.M. and Müller, W.E.G. (2005b) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften 92, 134–138.CrossRefGoogle Scholar
  24. Kaluzhnaya, O.V., Belikova, A.S., Podolskaya, E.P., Krasko, A., Müller, W.E.G. and Belikov, S.I. (2007) Silicatein identification of the freshwater sponge Lubomirskia baicalensis. Mol. Biol. 4,554–561.CrossRefGoogle Scholar
  25. Knauth, L.P. (2005) Temperature and salinity history of the Precambrian ocean: implication for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69.CrossRefGoogle Scholar
  26. Knoll, A.H. (1992) The early evolution of eukaryotes: a geological perspective. Science 256, 622–627.PubMedCrossRefGoogle Scholar
  27. Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G. and Head, I.M. (2001) Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48, 415–433.CrossRefGoogle Scholar
  28. Krasko, A., Batel, R., Schröder, H.C., Müller, I.M. and Müller, W.E.G. (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur. J. Biochem. 267, 4878–4887.PubMedCrossRefGoogle Scholar
  29. Kröger, N., Deutzmann, R., Bergsdorf, C. and Sumper, M. (2000) Species-specific polyamines from diatoms control silica morphology. Proc. Natl Acad. Sci. USA 97, 14133–14138.PubMedCrossRefGoogle Scholar
  30. Li, C.-W., Chu, S. and Lee, M. (1989) Characterizing the silica deposition vesicle of diatoms. Protoplasma 151, 158–163.CrossRefGoogle Scholar
  31. Likhoshway, Ye.V., Sorokovikova, E.G., Belkova, N.L., Belykh, O.I., Titov, A.T., Sakirko, M.V. and Parfenova, V.V. (2006a) Silicon mineralization in the culture of cyanobacteria from hot springs. Dokl. Biol. Sci. 407, 201–205.CrossRefGoogle Scholar
  32. Likhoshway, Ye.V., Masyukova, Yu.A., Sherbakova, T.A., Petrova, D.P. and Grachev, M.A. (2006b) Detection of the gene responsible for silicic acid transport in Chrysophycean algae. Dokl. Biol. Sci. 408, 256–260.CrossRefGoogle Scholar
  33. Mann, D.G. and Marchant, H.J. (1989) The origins of the diatom and its life cycle In: J.C. Green, B.S.C. Leadbeater and W.L. Diver (Eds) The Chromophyte Algae: Problems and Perspectives. Clarendon Press, Oxford, pp. 307–323.Google Scholar
  34. Medlin, L.K. and Kaczmarska, I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43, 1–29.Google Scholar
  35. Müller, W.E.G., Kaluzhnaya, O.V., Belikov, S.I., Rothenberger, M., Schröder, H.C., Reiber, A., Kaandorp, J.A., Manz, B., Mietchen, D. and Volke, F. (2006) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J. Struct. Biol. 153, 31–41.PubMedCrossRefGoogle Scholar
  36. Nikolaev, V.A., Harwood, D.M. and Samsonov, N.I. (2001) Early Cretaceons Diatoms. Nauka, St Petersburg.Google Scholar
  37. Phoenix, V.R., Konhauser, K.O. and Adams, D.G. (2000) Cyanobacterial viability during hydrothermal biomineralization. Chem. Geol. 169, 329–338.CrossRefGoogle Scholar
  38. Pickett-Heaps, J.D., Schmid, A.-M.M. and Edgar, L. (1990) The cell biology of diatom wall morphogenesis. In: F.E. Round and D.J. Chapman (Eds.) Progress in Phycological Research. Biopress, Bristol, pp. 2–168.Google Scholar
  39. Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R.F., Brzezinski, M.A., DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G., François, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D.M. and Quéguiner, B. (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet. Change 26, 317–365.Google Scholar
  40. Reimann, B.E.F. (1964) Deposition of silica inside a diatom cell. Exp. Cell. Res. 34, 605–608.PubMedCrossRefGoogle Scholar
  41. Renaut, R.W., Jones, B., Tiercelin, J.J. and Tarits, C. (2002) Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley. Sediment. Geol. 148, 235–257.CrossRefGoogle Scholar
  42. Round, F.E. and Crawford, R.M. (1981) The lines of evolution of Bacillariophyta. I. Origin. Proc. R. Soc. Lond. B 211, 237–260.CrossRefGoogle Scholar
  43. Round, F.E. and Crawford, R.M. (1984) The lines of evolution of Bacillariophyta. II. Origin. Proc. R. Soc. Lond. B 221, 169–188.Google Scholar
  44. Round, F.E., Crawford, R.M. and Mann D.G. (1990) The Diatoms Biology and Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
  45. Rozanov, A.Yu. (2006) Precambrian geobiology. Paleontol. J. 40(4), 434–443.CrossRefGoogle Scholar
  46. Schmid, A.-M.M. and Schulz, D. (1979) Wall morphogenesis in diatoms: depositions of silica by cytoplasmic vesicles. Protoplasma 100, 268–288.CrossRefGoogle Scholar
  47. Sergeev, V.N., Gerasimenko, L.M. and Zavarzin, G.A. (2002) The proterozoic history and present state of cyanobacteria. Microbiology 71, 623–637.CrossRefGoogle Scholar
  48. Sherbakova, T.A, Masyukova, Yu.A., Safonova, T.A., Petrova, D.P., Vereshagin, A.L., Minaeva, T.V., Adelshin, R.A., Triboy, T.I., Stonik, I.I., Aizdaitcher, N.A., Kozlov, M.V., Likhoshway, E.(Ye.)V. and Grachev, M.A. (2005) Conservative motif CMLD in silicic acid transport proteins of diatom algae. Mol. Biol. 39, 269–280.CrossRefGoogle Scholar
  49. Shimizu, K., Cha, J, Stucky, G.D. and Morse, D.E. (1998) Silicatein alpha: cathepsin l-like protein in sponge biosilica. Proc. Natl Acad. Sci. USA 95, 6234–6238.PubMedCrossRefGoogle Scholar
  50. Shimizu, K., Del Amo, Y., Brzezinski, M.A., Stucky, G.D. and Morse, D.E. (2001) A novel silica tracer for biological silification studies. Chem. Biol. 8, 1051–1060.PubMedCrossRefGoogle Scholar
  51. Sims, P.A., Mann, D.G. and Medlin L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45(4), 361–402.CrossRefGoogle Scholar
  52. Thamatrakoln, K. and Hildebrand, M. (2005) Approaches for functional characterization of diatom silicic acid transporters. J. Nanosci. Nanotechnol. 5, 1–9.CrossRefGoogle Scholar
  53. Thamatrakoln, K., Alverson, A.J. and Hildebrand, M. (2006). Comparative sequence analysis of diatom silicon transporters: toward a mechanistic model of silicon transport. J. Phycol. 42, 822–834.CrossRefGoogle Scholar
  54. Uriz, M.J., Turon, X. and Becerro, M.A. (2000) Silica deposition in Demospongiae: spiculogenesis in Crambe crambe. Cell. Tissue Res. 301, 299–309.PubMedCrossRefGoogle Scholar
  55. Uriz, M.J., Turon, X., Becerro, M.A. and Agell, G. (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc. Res. Technol. 62, 279–299.CrossRefGoogle Scholar
  56. Weaver, J.C. and Morse, D.E. (2003) Molecular biology of Demosponge axial filaments and their roles in biosilicification. Microsc. Res. Technol. 62, 356–367.CrossRefGoogle Scholar
  57. Wiens, M., Belikov, S.I., Kaluzhnaya, O.V., Krasko, A., Schröder H.C., Perovic-Ottstadt, S. and Müller, W.E.G. (2006) Molecular control of serial module formation along the apical–basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev. Genes Evol. 216(5), 229–242.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ye.V. Likhoshway
    • E.G. Sorokovikova
      • O.I. Belykh
        • O.L.V. Kaluzhnaya
          • S.I. Belikov
            • Ye.D. Bedoshvili
              • O.K.V. Kaluzhnaya
                • Ju.A. Masyukova
                  • T.A. Sherbakova

                    There are no affiliations available

                    Personalised recommendations