Advertisement

Biomineralization and Evolution. Coevolution of Mineral and Biological Worlds

  • I.S Barskov

Abstract

The concept of coevolution as a process of irreversible changes in the composition, structure, and function of two or more co-existing systems of different origin resulting from the exchange of the matter, energy, and information is applicable to a broad range of processes in nature. This chapter considers biomineralization, one of the fundamental biospheric phenomena, as an example of coevolution of the biological and mineralogical worlds.

Keywords

Magnetotactic Bacterium Biological World Mineral World Martian Meteorite Biological Mineralization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barskov, I.S. (1982) Biomineralization and evolution. Paleontol. Zh. 4, 5–13 (in Russ.).Google Scholar
  2. Barskov, I.S. (1984) Paleontological aspects of biomineralization. Reports of 27th International Geological Congress, Moscow, USSR, Paleontology Sect. C.02, vol. 2, 61–66 (in Russ.).Google Scholar
  3. Benzerara, K., Menguy, N., Guyot, F., Dominici, C. and Gillet, P. (2003) Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite. Proc. Natl Acad. Sci. USA 100(13), 7438–7442.PubMedCrossRefGoogle Scholar
  4. Chafetz, H.S., Akdim, B., Julia, R. and Reid, A. (1998) Mn- and Fe-rich black travertine shrubs: bacterially (and nanobacterially) induced precipitates. J. Sediment. Res. 68, 404–412.Google Scholar
  5. Cisar, J.O., Xu, D.-Q., Thompson, J., Swaim, W., Hu, L. and Kopecko, D.J. (2000) An alternative interpretation of nanobacteria-induced biomineralization. Proc. Natl Acad. Sci. USA 97(21), 11511–11515.PubMedCrossRefGoogle Scholar
  6. Danilov-Danilian, V.I., Losev, K.S. and Reif, I.E. (2005) To the main defiance of civilization. View from Russia. Infra-M, Moscow (in Russ.).Google Scholar
  7. Dove, P.M., DeYoreo, J.J. and Weiner, S. (Eds) (2004) Biomineralization. Mineralogical Society of America.Google Scholar
  8. Ehrlich, P.A. and Raven, P.R. (1964) Butterflies and plants. Evolution 18(4), 586–608.CrossRefGoogle Scholar
  9. Folk, R.L. (1992) Bacteria and nannobacteria revealed in hardgrounds, calcite cements, native sulfur, sulfide materials, and travertines (abstract). Geol. Soc. Am. Annu. Prog. Abstr., p. 104.Google Scholar
  10. Folk, R.L. (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sediment. Petrol. 63, 990–999.Google Scholar
  11. Folk, R.L. and Lynch, F.L. (1998) Carbonaceous objects resembling nannobacteria in the Allende meteorite. Proceedings of the International Symposium on Optical Science, Engineering, and Instrumentation (SPIE), vol. 3441, pp. 112–122.Google Scholar
  12. Hoover, R.B., Rozanov, A.Yu., Jerman, G.A. and Coston, J. (2004) Microfossils in CI and CO carbonaceous meteorites. In: R.B. Hoover, G.V. Levin and A.Yu. Rozanov (Eds), Instruments, Methods and Missions for Astrobiology VII, Proc. SPIE, vol. 5163, 7–22.CrossRefGoogle Scholar
  13. Kajander, E. and Ciftçioglu, N. (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl Acad. Sci. USA 95(14), 8274–8279.PubMedCrossRefGoogle Scholar
  14. Kirkland, B.L., Lynch, F.L., Rahnis, M.A, Folk, R.L., Molineux, I.J. and McLean, R.J.C. (1999) Alternative origins for nannobacteria-like objects in calcite. Geology 27(4), 347–350.CrossRefGoogle Scholar
  15. Knoll, A.H. (2004) Biomineralization and evolutionary history. In: P.M. Dove, J.J. DeYoreo and S. Weiner (Eds), Reviews in Mineralogy and Geochemistry, 54(1), 329–356.CrossRefGoogle Scholar
  16. Lowenstam, H.A. (1981) Minerals formed by organisms. Science 221, 1126–1131.CrossRefGoogle Scholar
  17. Lowenstam, H.A. (1984) Processes and products of biomineralization. Evolution of biomineralization. Reports of 27th International Geological Congress, Moscow, USSR, Paleontology Sect. C.02, vol. 2, 51–56 (in Russ.).Google Scholar
  18. Lowenstam, H. and Weiner, S. (1989) On Biomineralization. Oxford University Press, Oxford.Google Scholar
  19. Mann, S. (2001) Biomineralization. Oxford University Press, Oxford.Google Scholar
  20. McKay, D.S., Gibson, E.K., Jr, Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chiller, X.D., Maechling, C.R. and Zare, R.N. (1996) Search for past life on Mars: possible relic of biogenic activity in Martian meteorite ALH84001. Science 273, 924–930.PubMedCrossRefGoogle Scholar
  21. Moissejev, N.N. (1997) Human and Biosphere. Jung Quardian, Moscow (in Russ.).Google Scholar
  22. Sarikaya, M. (1994) An introduction to biomimetics: a structural viewpoint. Microsc. Res. Technol. 27, 360–375.CrossRefGoogle Scholar
  23. Zhegallo, E.A., Rozanov, A.Yu., Ushatinskaya, G.T., et al. (2000) Atlas of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia). NASA, Huntsville, AL, 167 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I.S Barskov
    • 1
  1. 1.Paleontological Institute of the Russian Academy of ScienceRussia

Personalised recommendations