Advertisement

Evolutionary Aspects of Geochemical Activity of Microbial Mats in Lakes and Hydrotherms of Baikal Rift Zone

  • B.B. Namsaraev
  • V.M. Gorlenko
  • Z.B Namsaraev
  • D.D. Barkhutova
  • L.P. Kozyreva
  • O.P. Dagurova
  • A.V. Tatarinov

Abstract

The long-term investigations of structure and biogeochemical activity of phototrophic microbial mats and non-phototrophic biofilms of hydrotherms, freshwater lake, soda and saline lakes located in Baikal rift zone were carried out. Microbial mats, especially phototrophic, are high productive systems with prevalence of production above destruction. Participation of the microbial community in travertine deposition as a model of the Precambrian era carbonaceous stromatolite formation (travertine) was shown on the Garga spring. Cyanobacterial mats of soda lakes and hydrotherms of Zabaikalie and Mongolia (the Baikal rift zone) can serve as model systems, which imitate conditions of existence of biological communities in the Precambrian era in the region of volcanic activity and the ancient soda ocean.

Keywords

Soda Lake Baikal Rift Zone Anoxygenic Phototrophic Bacterium Travertine Deposition Anoxygenic Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauld, J. (1984) Microbial mats in Shark Bay and Spencer Gulf. In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (Eds), Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 39–58.Google Scholar
  2. Bauld, J. and Brock, T.D. (1973) Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Arch. Microbiol. 92, 267–284.Google Scholar
  3. Borisenko, I.M., Ochirov, Yu.Ch. and Suslenkova, R.M. (1976) The travertine compound from sediments of the some mineral springs of Transbaikalia. Proc. Buryatia Geol. Inst. Ulan-Ude 7(15), 36–52.Google Scholar
  4. Brock, T.D. (1967) Microorganisms adapted to high temperatures. Nature 214, 882–885.PubMedCrossRefGoogle Scholar
  5. Caldwell, D.E., Caldwell, S.J. and Laycock, J.P. (1976) Thermotrix thioparus gen. nov. sp. nov. a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can. J. Microbiol. 22, 1509–1517.PubMedCrossRefGoogle Scholar
  6. Castenholz, R.W. (1976) The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J. Phycol. 12, 54–68.Google Scholar
  7. Castenholz, R.W. (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb. Ecol. 3, 79–105.CrossRefGoogle Scholar
  8. Gerasimenko, L.M., Mityushina, L.L. and Namsaraev, B.B. (2003) The mats Microcoleus from alkaliphilic and halophilic communities. Microbiology 72, 84–93 (in Russian).Google Scholar
  9. Giovannoni, S.J., Revsbech, N.P., Ward, D.M. and Castenholz R.W. (1987) Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch. Microbiol. 147, 80–87.CrossRefGoogle Scholar
  10. Gorlenko, V.M. and Bonch-Osmolovskaya, E.A. (1989) The microbial mats formation and activity of production and destruction processes. In: Calder Microorganisms. Nauka, Moscow, pp. 53-64.Google Scholar
  11. Gorlenko, V.M., Kompantseva, E.I. and Puchkova, N.N. (1985) The influence of temperature on the distribution of phototrophic bacteria in the hot springs. Microbiology 54, 848–853 (in Russian).Google Scholar
  12. Gorlenko, V.M., Namsaraev, B.B., Kulyrova, A.V., Zavarzina, D.G. and Zhilina, T.N. (1999) The activity of sulfate-reducing bacteria in the sediments of the soda lakes in Southeastern Transbaikal Region. Microbiology 68, 580–585.Google Scholar
  13. Howsley, R. and Pearson, H.W. (1979) pH dependent sulfide toxicity to oxygenic photosynthesis in cyanobacteria. FEMS Microb. Lett. 6, 287–292.CrossRefGoogle Scholar
  14. Jorgensen, B.B. and Nelson, D.C. (1988) Bacterial zonation, photosynthesis and spectral light distribution in hot spring microbial mats of Iceland. Microb. Ecol. 16, 133–148.CrossRefGoogle Scholar
  15. Madigan, M.T., Takigiku, R., Lee, R.G., Gest, R. and Hayes, J.M. (1989) Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations. Appl. Environ. Microbiol. 55, 639–644.Google Scholar
  16. Namsaraev, B.B. and Zemskaya, T.I. (2000) Microbial processes of carbon circulation in bottom sediments of Lake Baikal. Publishing House of Siberian Branch of RAS, Novosibirsk.Google Scholar
  17. Namsaraev, B.B., Dulov, L.E., Dubinina, G.A., Zemskaya, T.I., Granina, L.Z. and Karabanov, E.V. (1994) The participation of bacteria in processes of synthesis and destruction of the organic matter in microbic mats the lake Baikal. Microbiology 63, 345–352.Google Scholar
  18. Plyusnin, A.M., Suzdalnitskii, A.P., Adushinov, A.A. and Mironov A.G. (2000) Formation of travertine from carbonated and nitric hydrotherms in the Baikal rift zone. Geol. Geophys. 41, 546–552 (in Russian).Google Scholar
  19. Revsbech, N.P. and Ward, D.M. (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl. Environ. Microbiol. 48, 270–275.PubMedGoogle Scholar
  20. Rozanov, A.Yu. (Ed.) (2002) Bacteriological Paleontology. PIN RAS, Moscow.Google Scholar
  21. Skirnisdottir, S., Hreggvidsson, G.O., Hjorleifsdottir, S., Marteinsson, V.T., Petursdottir, S.K., Holst, O. and Kristjansson J.K. (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66, 2835–2841.Google Scholar
  22. Skyring, G.M., Chambers, L.A., Bauld, J. (1983) Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia. Aust. J. Mar. Freshw. Res., 34, 359–374.CrossRefGoogle Scholar
  23. Ward, D.M., Weller, R., Shiea, J., Castenholz, R.W. and Cohen, Y (1989) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Y. Cohen and E. Rosenberg (Eds), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. ASM, Washington, pp. 3–15.Google Scholar
  24. Zavarzin, G.A. (1984) Bacteria and composition of atmosphere. Nauka, Moscow.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B.B. Namsaraev
    • 1
  • V.M. Gorlenko
    • 1
  • Z.B Namsaraev
    • 1
  • D.D. Barkhutova
    • 1
  • L.P. Kozyreva
    • 1
  • O.P. Dagurova
    • 1
  • A.V. Tatarinov
    • 1
  1. 1.Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, Buryat State University Ulan-deRussia

Personalised recommendations