On Important Stages of Geosphere and Biosphere Evolution

  • N.L. Dobretsov
  • N.A. Kolchanov
  • V.V. Suslov


The necessary conditions for the existence of protein–nucleic acid life are the presence of liquid water, some protection against high-amplitude temperature jumps and cosmic factors (these may be the atmosphere and or a thick layer of water or same rocks) and the accessibility of biogenes, which are macroelements and microelements. Two geosphere-related canalizing vectors of biosphere evolution can be discerned. One is associated with an irreversible cooling and oxygenation of the planet and the associated complex pattern of interplaying endogenous cycles, which affect climates as well as the amount and composition of the biogenes in the “liquid water zone.” Change of the convection mode in the mantle between 3 and 2 Byr ago had the most important implications for the biosphere: the formation of plate tectonics (a deep ocean and continents), enrichment of the chemical composition of the effusive material and the “plume dropper,” which changes the oceanic-to-continental area ratio and the mantle-to-island-arc volcanism intensity ratio every 30 Myr. The World Ocean operates as a homeostatic system: it tempers climates, distributes biogene concentrations evenly over the globe and provides the hydrosphere with direct biogene supply from the mantle, which is how the second vector of biosphere evolution is set. Life is a homeostatic system too—not due to a tremendously high buffer’s capacity, but due to high rates of chemical reactions and a special program (the genome), which warrants autonomy from the environment. Reduction in methane concentrations and increase in atmospheric O2 in the course of the Earth's geological evolution caused the extinction of chemotrophic ecosystems. Autotrophic photosynthesis provided the biosphere with a source of energy that was not associated with the geosphere and helped the biosphere for the first time to gain independence (autonomization) from the geosphere. As a result, the biosphere develops a solid film of life spread out over the continents, pelagic and abyssal zones, and the geosphere supplemented its geochemical cycles with biogeochemical ones which are comparable, if not by the mass of the matter involved, by annual balance.


Rayleigh Number World Ocean Hydrogen Sulfide Lower Mantle Important Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleshin, V.V. and Petrov, N.B. (2003) Conditionally neutral characters. Priroda 12, 25–34 (in Russ.).Google Scholar
  2. Balavoine, G., de Rosa, R. and Adoutte, A. (2002) Hox clusters and bilaterian phylogeny. Mol. Phylogenet. Evol. 24. 366–373.PubMedCrossRefGoogle Scholar
  3. Bernal, J.D. (1967) The Origin of Life. World, New York.Google Scholar
  4. Braudel, F. (1990) La Méditerranée et le monde méditerranéen à l’époque de Philippe II, tome 2: Destins collectifs et mouvements d’ensemble. Armand Colin, Paris.Google Scholar
  5. Cairns-Smith, A.G. (2005) Sketches for a mineral genetic material. Elements 1, 157–161.CrossRefGoogle Scholar
  6. Carroll, S.B. (2001) Chance and necessity; the evolution of morphological complexity and diversity. Nature 409, 1102–1109.PubMedCrossRefGoogle Scholar
  7. Castresana, J. and Moreira, D. (1999) Respiratory chains in the last common ancestor of living organisms. J. Mol. Evol. 49, 453–460.PubMedCrossRefGoogle Scholar
  8. Cavalier-Smith, T. (2002a) The phagotrophic origin of eucaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354.Google Scholar
  9. Cavalier-Smith, T. (2002b) Origins of the machinery of recombination and sex. Heredity 88, 125–141.CrossRefGoogle Scholar
  10. Chetverin, A.B. (1999) The puzzle of RNA recombination. FEBS Lett. 460, 1–5.PubMedCrossRefGoogle Scholar
  11. Chetverina, H.V. and Chetverin, A.B. (1993) Cloning of RNA molecules in vitro. NAR 21, 2349–2353.PubMedCrossRefGoogle Scholar
  12. Chyba, C.F. and McDonald, G.D. (1995) The origin of life in the solar system: current issues. Annu. Rev. Earth Planet. Sci. 23, 215–249.PubMedCrossRefGoogle Scholar
  13. Condie, K.C. (1989) Plate Tectonics and Crustal Evolution. Pergamon Press, Oxford.Google Scholar
  14. Dobretsov, N.L. and Chumakov, N.N. (2001) Global periodical variations in litologspheric and biospheric evolution. In: N.L. Dobretsov and N.I. Kovalenko (Eds), Global Environmental Changes. SO RAN, filial GEO, Novosibirsk, pp. 11–26 (in Russ.).Google Scholar
  15. Dobretsov, N.L. and Kirdyashkin, A.G. (1998) Assessment of global matter exchange between the Earth's layers: comparing geological and theoretical data. Geol. Geofiz. 39, 1269–1279 (in Russ.).Google Scholar
  16. Dobretsov, N.L. and Kovalenko, N.I. (1995) Global environmental changes. Geol. Geofiz. 36, 7–30 (in Russ.).Google Scholar
  17. Dobretsov, N.L., Kirdyashkin A.G. and Kirdyashkin, A.A. (2001) Depth Geodynamics. Geya, Novosibirsk (in Russ.).Google Scholar
  18. Fedonkin, M.A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research 7, 9–41.CrossRefGoogle Scholar
  19. Ferris, J.P. (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1, 145–149.CrossRefGoogle Scholar
  20. Grigoryev, D.P. (1956) Further insights into mineralogical objects; minerals as per A.K. Boldyrev. Zap. Vses. Mineral. O-va. 85, 463–471 (in Russ.).Google Scholar
  21. Hazen, R.M. (2005) Genesis: rocks, minerals and the geochemical origin of life. Elements 1, 135–137.CrossRefGoogle Scholar
  22. Hedges, S.B. and Kumar, S. (2003) Genomic clocks and evolutionary timescales. Trends Genet. 19, 200–206.CrossRefGoogle Scholar
  23. Hedges, S.B. and Kumar, S. (2004) Precision of molecular time estimates. Trends Genet. 20, 242–247.PubMedCrossRefGoogle Scholar
  24. Ivanisenko, V.A., Pintus, S.S., Grigorovich, D.A. and Kolchanov, N.A. (2005) PDBSite: a database of the 3D structure of protein functional sites. NAR 33, D183–D187.PubMedCrossRefGoogle Scholar
  25. Izokh, E.P. (1978) Assessment of the Ore-Bearing Capacity of Granitoid Formations with a View to Making Predictions. Nedra, Moscow (in Russ.).Google Scholar
  26. Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E. and Bartel, D.P. (2001) RNA-catalyzed RNA polimerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325.PubMedCrossRefGoogle Scholar
  27. Kalandadze, N.N. and Rautian, A.S. (1993) Symptomatology of ecological crises. Stratigr. Geol. korrel. 1, 3–8 (in Russ.).Google Scholar
  28. Kanygin, A.V. (2001) The Ordovician explosive divergence of the earth's organic realm: causes and effects of the biosphere evolution. Russ. Geol. Geophis. 42, 599–633.Google Scholar
  29. Khain, V.E. (2003) Main Challenges in Modern Geology. Nauchnyy Mir, Moscow (in Russ.).Google Scholar
  30. Kirdyashkin, A.G. and Dobretsov, N.L. (2001) The effects of the structure of convective flows and plume flows in the Earth’s mantle on the periodicity of endogenous processes. In: N.L. Dobretsov and N.I. Kovalenko (Eds), Global Environmental Changes. SO RAN, filial GEO, Novosibirsk, pp. 27–41 (in Russ.).Google Scholar
  31. Knoll, A.H. (1994) Neoproterozoic evolution and environmental change. In: S. Bengtson (Ed.), Early Life on Earth. Columbia Univ. Press, New York, pp. 439–449.Google Scholar
  32. Kolchanov, N.A., Suslov, V.V. and Shumny, V.K. (2003) Molecular evolution of genetic systems. Paleontol. J. 37, 617–629.Google Scholar
  33. Krasilov, V.A. (1986) Unsolved Problems of Evolution Theory. FERSAS SSSR, Vladivistok (in Russ.).Google Scholar
  34. de Laeter, J.R. and Trendall, A.F. (2002) The oldest rocks: the Western Australian connection. J. R. S. West. Aust. 85, 153-160.Google Scholar
  35. Lisitsyn, A.P. (1980) The history of oceanic volcanism. In: A.S. Monin and A.P. Lisitsyn (Eds), The Geological History of the Ocean. Nauka, Moscow, pp. 278–319 (in Russ.).Google Scholar
  36. Lisitsyn, A.P. (1993) Hydrothermal systems of the World Ocean as a supplier of endogenous matter In: A.P. Lisitsyn (Ed.), Hydrothermal Systems and Sediment Formations of Mid-oceanic Ridges. Nauka, Moscow, pp. 147–247 (in Russ.).Google Scholar
  37. Lisitsyn, A.P. (2001) The lithology of lithospheric plates. Geol. Geofiz. 42, 522–559 (in Russ.).Google Scholar
  38. Liubischev, A.A. (1982) On the Form, Systematics and Evolution of Organisms. Nauka, Moscow (in Russ.).Google Scholar
  39. Lockwood, J.A., Bomar, C.R., Williams, S.E., Dodd, J.L., Quan, M. and Li, H. (1993) Insect ecology on the Asian and North American steppes: striking differences and remarkable similarities. In: Li Bo (Ed.), Proceedings of the International Symposium on Grassland Resources. August, 1993. Agricultural Scientech Press, Beijing, pp. 513–527.Google Scholar
  40. Malakhov, V.V. and Galkin, S.V. (1998) The Vestimentifera: Acoelic Invertebrates of the Deep. KMK, Moscow (in Russ.).Google Scholar
  41. Markov, A.V. (2001) Dynamics of the marine faunal diversity in the Phanerozoic: a new approach. Paleontol. J. 35, 1–9.Google Scholar
  42. Markov, A.V. (2002) Mechanisms responsible for the increase in the taxonomic diversity in the Phanerozoic Marine Biota. Paleontol. J. 36, 121–130.Google Scholar
  43. Maslennikov, V.V. (1999) Sedimentogenesis, Halmyrolysis and the Ecology of Pyritiferous Paleohydrothermal Fields: a South Urals Case. Geotur, Miass (in Russ.).Google Scholar
  44. Natochin, Yu.V. (2005.) The role of sodium ions as a stimulus for the evolution of cells and multicellular animals. Paleonotol. J. 39, 358–363.Google Scholar
  45. Peterson, K.J. and Eernisse, D.J. (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3, 170–205.PubMedCrossRefGoogle Scholar
  46. Polevoy, V.V. (1985) The living state of the cell. In: V.V. Polevoy and Yu.I. Maslov (Eds), The Evolution of Function in Plants. LGU, Leningrad, pp. 36–45 (in Russ.),Google Scholar
  47. Prozorov, A.A. (2002) Altruism in the bacterial world? Uspekhi Sovremennoy Biol. 122, 403–413 (in Russ.).Google Scholar
  48. Rozanov, A.Yu. (2006) Precambrian geobiology. Paleontol. J. 40, S434–S443.CrossRefGoogle Scholar
  49. Rozhnov, S.V. (2005) Morphological patterns in the formation and evolution of higher taxa of echinodermata. In: E.I. Vorobjeva and B.R. Striganova (Eds), Evolutionary Factors of the Formation of Animal Life Diversity. KMK Scientific Press, Moscow, pp. 156–170 (in Russ.).Google Scholar
  50. Rundkvist, D.V. (1968) Issues in mineral research. Zap. Vses. Mineral. O-va. 97, 191–209 (in Russ.).Google Scholar
  51. Rundkvist, D.V., Denisenko, V.K. and Pavlova, I.G. (1971) Greisen Deposits (Ontogenesis and Phylogenesis). Nedra, Moscow (in Russ.).Google Scholar
  52. Ruvinsky, A.O. (1991) Sex, meiosis and progressive evolution. In: V.K. Shumny, N.A. Kolchanov and A.O. Ruvinsky (Eds), Problems of Genetics and Evolutional Theory. Nauka, Novosibirsk, pp. 214–228 (in Russ.).Google Scholar
  53. Schidlowski, M. (1988) A 3,800 million-year old record of life from carbon in sedimentary rocks. Nature 333, 313–318.CrossRefGoogle Scholar
  54. Semikhatov, M.A. (1993) The most recent scales for general division of the Precambrian: a comparison. Stratigr. Geol. korrel. 1, 6–16 (in Russ.).Google Scholar
  55. Sepkoski, J.J. (1994) Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity. Acta Palaeontol. Polon. 38, 175–198.Google Scholar
  56. Sepkoski, J.J. (1996.) Patterns of Phanerozoic extinction: a perspective from global data bases. In: O.H. Walliser (Ed.), Global Events and Event Stratigraphy. Springer, Berlin, pp. 35–51.Google Scholar
  57. Sergeyev, V.N., Noll, E.H. and Zavarzin, G.A. (1996) The first three billion years of life: from prokaryotes to eukaryotes. Priroda 6, 54–67 (in Russ.).Google Scholar
  58. Shestakov, S.V. (2005) Contribution of genomics to investigation of prokaryotic evolution. In: A. Yu Rozanov and V.N. Snytnikov (Eds) Proceedings of the International Workshop on Biosphere Origin and Evolution. IC SB RAS, Novosibirsk, pp. 24–25.Google Scholar
  59. Shmalgauzen, I.I. (1968) Evolutionary Factors (Stabilizing Selection Theory). Nauka, Moscow (in Russ.).Google Scholar
  60. Sokolov, B.S. and Fedonkin, M.A. (1988.) Modern Paleontology. Nedra, Moscow (in Russ.).Google Scholar
  61. Starobogatov, Ya.I. (1985.) Aspects of Speciation. VINITI, Moscow (in Russ.).Google Scholar
  62. Taft, R.J. and Mattick, J.S. (2003) Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biol. 5. P1. Epub.Google Scholar
  63. Tajika, E. and Matsui, N. (1992) Evolution of terrestrial proto-CO2-atmosphere coupled with thermal history of Earth. Earth Planet. Sci. Lett. 113, 251–266.CrossRefGoogle Scholar
  64. Trubitsin, V.P. and Rykov V.V. (2001) Numerical models of mantle convection's evolution: In: N.L. Dobretsov and N.I. Kovalenko (Eds), Global Environmental Changes. SO RAN, filial GEO, Novosibirsk, pp. 42–55 (in Russ.).Google Scholar
  65. Unrau, P.J. and Bartel, D.P. (1998) RNA-catalyzed nucleotide synthesis. Nature 395, 260–263.PubMedCrossRefGoogle Scholar
  66. Vasilyev, V.P., Vasilyeva, E.D. and Osipov, A.G (1983). First evidence favoring the main hypothesis of net-like speciation. Dokl. AN SSSR 271, 1009–1012 (in Russ.).Google Scholar
  67. Vavilov, N.I. (1967) The law of homologous series in the inheritance of variability. In: I.A.Rappoport (Ed.), Selection from the Works of N.I. Vavilov, Vol.1. Nauka, Leningrad, pp. 7–61 (in Russ.).Google Scholar
  68. Vernadsky, V.I. (1987) The Chemical Composition of the Earth and its Surroundings. Nauka, Moscow (in Russ.).Google Scholar
  69. Vinogradov, M.E. (2004) Biological Productivity of Oceanic Ecosystems. Nauka, Moscow (in Russ.).Google Scholar
  70. Zakrutkin, V.E. (1993) On the scale of organic matter accumulation in the Precambrian and Phanerozoic. In: A.Yu. Rozanov (Ed.), Problemy Doantropogennoy Evoliutsii Biosfery. Nauka, Moscow, pp. 202–212 (in Russ.).Google Scholar
  71. Zavarzin, G.A. (2001) Formation of biosphere. Vestnik RAS 71, 988–1001 (in Russ.).Google Scholar
  72. Zavarzin, G.A. (2003a) Lectures on Natural Resource Microbiology. Nauka, Moscow (in Russ.).Google Scholar
  73. Zavarzin, G.A. (2003b) The antipode of the noosphere. Vestnik RAS 73, 627–636 (in Russ.).Google Scholar
  74. Zhegallo, V.I., Kalandadze, N.N., Kuznetosva, T.V. and Rautian, A.S. (2001) The fate of megafauna in the Late Anthropogene. In: The Mammoth and its Neighborhood: 200 Years of Research. Geos, Moscow, pp. 287–306 (in Russ.).Google Scholar
  75. Zherikhin, V.V. (1986) Biocoenotic regulation of evolution. Paleontol. Zh. 1, 3–12 (in Russ.).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N.L. Dobretsov
    • 1
  • N.A. Kolchanov
  • V.V. Suslov
  1. 1.Institute of Geology Mineralogy SB, RASNovosibirskRussia

Personalised recommendations