Advertisement

One of the most exciting opportunities in optoelectronics currently is devices based on organic materials. These have many advantages, primarily: lower-technology processing with less sensitivity to processing environment (but many are very air sensitive), flexibility, and the opportunity to apply the enormous power of organic synthesis to tailoring the properties of the materials to specific applications. Furthermore, organics can emit light directly as do conventional cathode-ray-tubes and plasma display panels, rather than relying on back-lighting systems such as are used in liquid-crystal displays. One can imagine these technologies leading to poster-sized televisions which can be rolled up and stored in mailing tubes, or unrolled and thumb-tacked to a wall. The materials are already being applied in compact lightweight, power-efficient light emitting devices in small areas such as cell-phone displays. The primary problem with all organic devices is stability. When carriers are injected into these materials, sometimes a molecule falls apart. This does not need to be very common for the device to degrade significantly over relatively short operating times. This chapter considers the options for organic semiconductors and how they are applied.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Organic Semiconductor Charge Injection Lower Unoccupied Molecular Orbital Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References:

  1. [1]
    Brédas, Jean-Luc; Cornil, Jérôme; Beljonne, David; Dos Santos, Donizetti A; and Shuai, Zhigang; “Excited-state electronic structure of conjugated oligomers and polymers: a quantum-chemical approach to optical phenomena”. Accounts in Chemical Research 1999; 32: 267-276.CrossRefGoogle Scholar
  2. [2]
    Cornil, J.; Beljonne, D.; Brédas, J.L.; “Towards a coherent description of the nature of the photogenerated species in the lowest-lying one-photon allowed excited state of isolated conjugated chains.” Synthetic Metals 1997; 85: 1029-1030.CrossRefGoogle Scholar
  3. [3]
    Köhler, A.; dos Santos, D.A.; Beljonne, D.; Shuai, Z; Bredás, J.-L.; Holmes, A.B.; Kraus, A.; Müllen, K.; and Friend, R.H.; “Charge separation in localized and delocalized electronic states in polymeric semiconductors.” Nature 1998; 392: 903-906.CrossRefADSGoogle Scholar
  4. [4]
    Patel, N. K.; Cinà, S.; and Burroughes, J. H.; “High-efficiency organic light-emitting diodes.” IEEE J. on Selected Topics in Quantum Electronics, 2002; 8: 346-61.CrossRefGoogle Scholar
  5. [5]
    Jackson, T.N.; Lin, Y-Y.; Gundlach, David J.; and Klauk, H.; “Organic thin-film transistors for organic light-emitting flat-panel display backplanes.” IEEE J. Sel. Topics In Quantum Electronics 1998; 4: 100-4.CrossRefGoogle Scholar
  6. [6]
    Sirringhaus, H.; Friend, Richard H.; “Integrated optoelectronic devices based on conjugated polymers.” Science 1998; 280: 1741-4.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Jackson, Thomas N.; Organic thin film transistors-electronics anywhere. Proceedings of the 2001 International Semiconductor Device Research Symposium. Piscataway N.J.: IEEE, 2001.Google Scholar
  8. [8]
    Dimitrakopoulos, C.; Purushothaman, S.; Kymissis, J.; Callegari, A.; and Shaw, J.M.; “Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators.” Science 1999; 283: 822-4.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Zhang, R.Q. and Lee, S.T.; “Effect of charging on electronic structure of the Alq3 molecule: the identification of carrier transport properties.” Chem. Phys. Lett. 2000; 326: 413-20.CrossRefADSGoogle Scholar
  10. [10]
    See for example, Kijima, Yasunori; Asai, Nobutoshi; and Tamura, Shin-ichiro; “A blue organic light emitting diode.” Jpn. J. Appl. Phys. 1999; 38: 5274-77.Google Scholar
  11. [11]
    Adamovich, Vadim I.; Cordero, Steven R.; Djurovich, Peter I.; Tamayo, Arnold; Thompson, Mark E.; D’Andrade, Brian W.; and Forrest, Stephen R.; “New charge-carrier blocking materials for high efficiency OLEDs.” Organic Electronics 2003: 77-87.Google Scholar
  12. [12]
    Adachi, C.; Nagai, K.; and Tamoto, N.; “Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes.” Appl. Phys. Lett. 1995; 66: 2679-81.CrossRefADSGoogle Scholar
  13. [13]
    Zhu, L.; Tang, H.; Harima, Y.; Kunugi, Y.; Yamashita, K.; Ohshita, J.; Kunai, A.; “A relationship between driving voltage and the highest occupied molecular orbital level of hole-transporting metallophthalocyanine layer for organic electroluminescence devices.” Thin Solid Films, 2001; 396: 213-8.CrossRefGoogle Scholar
  14. [14]
    D. Hohnholz, S. Steinbrecher, M. Hanack, “Applications of phthalocyanines in organic light emitting devices.” J. Mol. Struct., 2000; 521: 231-7.CrossRefADSGoogle Scholar
  15. [15]
    Adachi, Chihaya; Baldo, Marc A.; and Forrest, Stephen R.; “Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host.” J. Appl. Phys., 2000; 87: 8049-55.CrossRefADSGoogle Scholar
  16. [16]
    Shoustikov, Andrei A.; You, Yuijian; Thompson, Mark E.; “Electroluminescence color tuning by dye doping in organic light-emitting diodes.” IEEE J. Sel. Topics in Quantum Electronics 1998; 4: 3-13.CrossRefGoogle Scholar
  17. [17]
    Wu, C.; Sturm, J.C.; Register, R.A.; Tian, J.; Dana, E.P.; and Thompson, M.E.; “Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities.” IEEE Trans. on Electron Dev. 1997; 44: 1269-81.CrossRefADSGoogle Scholar
  18. [18]
    Adachi, Chihaya; Thompson, Mark E.; and Forrest, Stephen R.; “Architectures for efficient electrophosphorescent organic light-emitting devices.” IEEE J. on Selected Topics in Quantum Electronics, 2002; 8: 372-7.CrossRefGoogle Scholar
  19. [19]
    Kanno, Hiroshi; Hamada, Yuji; Takahashi, Hisakazu; “Development of OLED with high stability and luminescence efficiency by co-doping methods for full color displays.” IEEE J. on Selected Topics in Quantum Electronics 2004; 10: 30-36.CrossRefGoogle Scholar
  20. [20]
    Baldo, M.A.; Thompson, M.E.; and Forrest, S.R.; “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer.” Nature 2000; 403: 750-753.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers, 2nd ed. New York: Oxford University Press, 1999, pp. 337-340.Google Scholar
  22. [22]
    Schoonveld, W.A.; Wildeman, J.; Fichou, D.; Bobbert, P.A.; Van Wees, B.J.; and Klapwijk, T.M.; “Coulomb-blockade transport in single-crystal organic thin-film transistors.” Nature 2000; 404: 977-80.CrossRefPubMedADSGoogle Scholar
  23. [23]
    dos Santos, D.A.; Quattrocchi, C.; Friend, R.H.; Brédas, J.L.; “Electronic structure of polyparaphenylene vinylene copolymers: the relationship to light-emitting characteristics.” J. Chem. Phys. 1994; 100: 3301-6.CrossRefADSGoogle Scholar
  24. [24]
    Greenham, N.C.; Moratti, S.C.; Bradley, D.D.C.; Friend, R.H.; and Holmes, A.B.; “Efficient light-emitting diodes based on polymers with high electron affinities.” Nature, 1993; 365: 628-30.CrossRefADSGoogle Scholar
  25. [25]
    Van Hutten, P.F.; Krasnikov, V.V.; and Hadziioannou, G.; “A model oligomer approach to light-emitting semiconducting polymers.” Acc. Chem. Res. 1999; 32: 257-65.CrossRefGoogle Scholar
  26. [26]
    Fox, M.A.; “Fundamentals in the design of molecular electronic devices: long range charge carrier transport and electronic coupling.” Acc. Chem. Res. 2999; 32: 201-7.CrossRefGoogle Scholar
  27. [27]
    Rees, I.D.; Robinson, K.L.; Holmes, A.B.; Towns, C.R.; and O’Dell, R.; “Recent developments in light-emitting polymers.” MRS Bulletin, 2002; 27: 451.Google Scholar
  28. [28]
    Campbell, A.J.; Bradley, D.D.C.; Antoniadis, H.; Inbasekaran, M.; Wu, W. W.; and Woo, E.P.; “Transient and steady-state space-charge-limited currents in polyfluorene copolymer diode structures with ohmic hole injecting contacts.” Appl. Phys. Lett. 2000; 76: 1734-6.CrossRefADSGoogle Scholar
  29. [29]
    Bao, Z.; Dodabalapur, A.; and Lovinger, A.J.; “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility.” Appl. Phys. Lett. 1996; 69: 4108-10.CrossRefADSGoogle Scholar
  30. [30]
    For details, see Dimitrakopoulos, C.D. and Mascaro, D.J.; “Organic thin-film transistors: a review of recent advances.” IBM Journal of Research and Development 2001; 45: 11-27.Google Scholar
  31. [31]
    Sheats, J.R.; Mackie, W.A.; Anz, S.; and Xie, T.; “Polymer electroluminescent devices with zirconium carbide cathodes.” Proc. SPIE, 1997; 1348: 219-27.CrossRefGoogle Scholar
  32. [32]
    For details, see Shen, C. and Kahn, A., “The role of interface states in controlling the electronic structure of Alq / 3 reactive metal contacts.” Organic Electronics, 2001; 2: 89-95.Google Scholar
  33. [33]
    Parthasarathy, G.; Adachi, C.; Burrows, P.E.; and Forrest, S.R.; “High-efficiency transparent organic light-emitting devices.” Appl. Phys. Lett. 2000; 76: 2128-30.CrossRefADSGoogle Scholar
  34. [34]
    Shun-Chi Chang, Jie Liu, J. Bharathan, Yang Yang, J. Onohara, and J. Kido, “Multicolor organic light-emitting diodes processed by hybrid inkjet printing” in Advanced Materials, 1999; 11: 734-7.CrossRefGoogle Scholar
  35. [35]
    Pede, D.; Serra, G.; and De Rossi, D; “Microfabrication of conducting polymer devices by ink-jet stereolithography” in Materials Science and Engineering C, 1998; 5: 289-91.CrossRefGoogle Scholar
  36. [36]
    Chabinyc, M.L.; Wong, W.S.; Arias, A.C.; Ready, S.; Lujan, R.A.; Daniel, J.H.; Krusor, B.; Apte, R.B.; Salleo, A.; Street, R.A.; “Printing methods and materials for large-area electronic devices” in Proceedings of the IEEE 2005; 93: 1491-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations