Advertisement

As with all materials, engineering semiconductors primarily involves formation of alloys and control of defects. Defect engineering is discussed in detail in Chapter 7. This chapter considers the basics of alloying. The objective is usually to control the optoelectronic properties of the semiconductor, primarily through its energy band structure. Other properties change as well and some of these, such as lattice constant, are important to producing a high-quality material, as we shall see in Chapter 7.

Keywords

Spinodal Decomposition Quaternary Alloy Heterojunction Bipolar Transistor Band Offset Semiconductor Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References:

  1. [1]
    Villars, P., Prince, A., and Okamoto, H., Handbook of Ternary Alloy Phase Diagrams, v. 7. Metals Park: ASM International, 1995.Google Scholar
  2. [2]
    Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R., “Band parameters for III-V compound semiconductors and their alloys.” J. Appl. Phys., 2001; 89:5815-75.CrossRefADSGoogle Scholar
  3. [3]
    Schubert, E.F., Light Emitting Diodes, 2nd edition. Cambridge: Cambridge University Press, 2006 Chapter 13.CrossRefGoogle Scholar
  4. [4]
    Wei, S-H., and Zunger, A., “Band offsets and optical bowings of chalcopyrites and Znbased II-VI alloys.” J. Appl. Phys., 1995; 78: 3846-56.CrossRefADSGoogle Scholar
  5. [5]
    Faschinger, W., “The energy gap Eg of Zn1-xMgxSySe1-y epitaxial layers as a function of composition and temperature.” Semicond. Sci. Technol., 1997; 12: 970-3.CrossRefADSGoogle Scholar
  6. [6]
    Ichimura, M., and Sasaki, A., “Short-range order in III-V ternary alloy semiconductors.” J. Appl. Phys., 1986; 60: 3850-5.CrossRefADSGoogle Scholar
  7. [7]
    Keating, P.N., “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure.” Phys. Rev., 1966; 145: 637-45.CrossRefADSGoogle Scholar
  8. [8]
    Onabe, K., “Unstable regions in III-V quaternary solid solutions composition plane calculated with strictly regular solution approximation.” Jpn. J. Appl. Phys., 1982; 21: L323-5.CrossRefADSGoogle Scholar
  9. [9]
    Stringfellow, G.B., In Mascarenhas, A., editor, Spontaneous Ordering in Semiconductor Alloys. New York: Kluwer, 2002, pp. 99-117.Google Scholar
  10. [10]
    Van Vechten, J.A., “Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies.” Phys. Rev., 1969; 187: 1007-20.CrossRefADSGoogle Scholar
  11. [11]
    Van Vechten, J.A., and Bergstresser, T.K., “Electronic structures of semiconductor alloys.” Phys. Rev. B, 1970; 1: 3351-8.CrossRefADSGoogle Scholar
  12. [12]
    See Herzog, H.J.; “Crystal structure, lattice parameters and liquidus-solidus curve of the SiGe system,” in Properties of Silicon Germanium and SiGe:Carbon. Erich Kasper and Klara Lyutovich, eds., London, INSPEC, 2000, p. 45.Google Scholar
  13. [13]
    Jäger, W.; “Ordering in SiGe alloys,” in Properties of Silicon Germanium and SiGe:Carbon. Erich Kasper and Klara Lyutovich, eds., London, INSPEC, 2000, p. 50.Google Scholar
  14. [14]
    Bublik, V.T., Gorelik, S.S., Zaitsev, A.A., and Polyakov, A.Y., “Diffuse X-ray determination of the energy of mixing and elastic constants of Ge-Si solid solutions.” Phys Status Solidi B, 1974; 66: 427-32.CrossRefGoogle Scholar
  15. [15]
    Floro, J.A., Chason, E., Lee, S.R., Petersen, G.A., “Biaxial moduli of coherent Si 1-xGex films on Si(001).” Appl. Phys. Lett., 1997; 71: 1694-6.CrossRefADSGoogle Scholar
  16. [16]
    Penn, C.; Fromherz, T; and Bauer, G.; “Energy gaps and band structure of SiGe and their temperature dependence,” in Erich Kasper and Klara Lyutovich, editors, Properties of Silicon Germanium and SiGe:Carbon. London: INSPEC, 2000, p. 125.Google Scholar
  17. [17]
    Van der Walle, C.B.; “SiGe heterojunctions and band offsets,” in Erich Kasper and Klara Lyutovich, editors, Properties of Silicon Germanium and SiGe:Carbon. London: INSPEC, 2000, p. 149.Google Scholar
  18. [18]
    Galdin, S.; Dollfus, P.; Aubry-Fortuna, V.; Hesto, P.; and Osten, H.J., “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si(001) and Si1-xGex on Si1-zGez (001).” Semicond. Sci. Technol., 2000; 15: 565-572.CrossRefADSGoogle Scholar
  19. [19]
    Schaffler, F.; “Electron and hole mobilities in Si/SiGe heterostructures,” in Erich Kasper and Klara Lyutovich, editors, Properties of Silicon Germanium and SiGe:Carbon. London: INSPEC, 2000, p. 196.Google Scholar
  20. [20]
    Cadien, K.C., Elthouky, A.H., and Greene, J.E., “Growth of single-crystal metastable semiconducting (GaSb)1-xGex films.” Appl. Phys. Lett., 1981; 38: 773-5.CrossRefADSGoogle Scholar
  21. [21]
    Shah, S.I.U., Ph.D. Thesis, Crystal growth, atomic ordering, phase transitions in pseudobinary constituents of the metastable quaternary (GaSb) 1-x (Ge 2(1-y) Sn 2y ) x. University of Illinois, 1986.Google Scholar
  22. [22]
    Shin, J, Hsu, T.C., Hsu, Y., and Stringfellow, G.B., “OMVPE growth of metastable GaAsSb and GaInAsSb alloys using TBAs and TBDMSb.” Journal of Crystal Growth, 1997; 179:1-9.CrossRefADSGoogle Scholar
  23. [23]
    Rieh, J.S., Jagannathan, B., Chen, H., Schonenberg, K.T., Angell, D., Chinthakindi, A., Florkey, J., Golan, F., Greenberg, D., Jeng, S.-J., Khater, M., Pagette, F., Schnabel, C., Smith, P., Stricker, A., Vaed, K., Volant, R., Ahlgren, D., Freeman, G., Stein, K., and Subbanna, S., “SiGe HBT’s with cut-off frequency of 350 GHz.” IEDM, 2002: 771-4.Google Scholar
  24. [24]
    Jagannathan, B., Khater, M., Pagette, F., Rieh, J.-S., Angell, D., Chen, H., Florkey, J., Golan, F., Greenberg, D.R., Groves, R., Jeng, S.J., Johnson, J., Mengistu, E., Schonenberg, K.T., Schnabel, C.M., Smith, P., Stricker, A., Ahlgren, D., Freeman, G.,  Stein, K., and Subbanna, S., “Self-aligned SiGe npn transistors with 285 GHz fMAX and 207 GHz fT in a manufacturable technology.” IEEE Electron Device Letters, 2002; 23: 258-60.CrossRefADSGoogle Scholar
  25. [25]
    Hafez, Walid; Lai, Jie-Wei; and Feng, Milton; “Vertical scaling of 0.25-µm emitter InP/InGaAs single heterojunction bipolar transistors with fT of 452 GHz.” IEEE Electron Device Letters, 2003; 24: 436-8.CrossRefGoogle Scholar
  26. [26]
    Ramanathan, K.; Contreras, M.A.; Perkins, C.L.; Asher, S.; Hasoon, F.S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; Ward, J.; Duda, A.; “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells.” Prog. in Photovoltaics: Research and Applications, 2003; 11: 225-30.CrossRefGoogle Scholar
  27. [27]
    King, R.R.; Fetzer, C.M.; Colter, P.C.; Edmondson, K.M.; Ermer, J.H.; Cotal, H.L.; Hojun Yoon; Stavrides, A.P.; Kinsey, G.; Krut, D.D.; Karam, N.H., “High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures.” Proc. 29th IEEE Photovoltaic Specialists Conference, IEEE, 2002: 776-81.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations