Skip to main content

As with all materials, engineering semiconductors primarily involves formation of alloys and control of defects. Defect engineering is discussed in detail in Chapter 7. This chapter considers the basics of alloying. The objective is usually to control the optoelectronic properties of the semiconductor, primarily through its energy band structure. Other properties change as well and some of these, such as lattice constant, are important to producing a high-quality material, as we shall see in Chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References:

  1. Villars, P., Prince, A., and Okamoto, H., Handbook of Ternary Alloy Phase Diagrams, v. 7. Metals Park: ASM International, 1995.

    Google Scholar 

  2. Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R., “Band parameters for III-V compound semiconductors and their alloys.” J. Appl. Phys., 2001; 89:5815-75.

    Article  CAS  ADS  Google Scholar 

  3. Schubert, E.F., Light Emitting Diodes, 2nd edition. Cambridge: Cambridge University Press, 2006 Chapter 13.

    Book  Google Scholar 

  4. Wei, S-H., and Zunger, A., “Band offsets and optical bowings of chalcopyrites and Znbased II-VI alloys.” J. Appl. Phys., 1995; 78: 3846-56.

    Article  CAS  ADS  Google Scholar 

  5. Faschinger, W., “The energy gap Eg of Zn1-xMgxSySe1-y epitaxial layers as a function of composition and temperature.” Semicond. Sci. Technol., 1997; 12: 970-3.

    Article  ADS  Google Scholar 

  6. Ichimura, M., and Sasaki, A., “Short-range order in III-V ternary alloy semiconductors.” J. Appl. Phys., 1986; 60: 3850-5.

    Article  CAS  ADS  Google Scholar 

  7. Keating, P.N., “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure.” Phys. Rev., 1966; 145: 637-45.

    Article  CAS  ADS  Google Scholar 

  8. Onabe, K., “Unstable regions in III-V quaternary solid solutions composition plane calculated with strictly regular solution approximation.” Jpn. J. Appl. Phys., 1982; 21: L323-5.

    Article  ADS  Google Scholar 

  9. Stringfellow, G.B., In Mascarenhas, A., editor, Spontaneous Ordering in Semiconductor Alloys. New York: Kluwer, 2002, pp. 99-117.

    Google Scholar 

  10. Van Vechten, J.A., “Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies.” Phys. Rev., 1969; 187: 1007-20.

    Article  CAS  ADS  Google Scholar 

  11. Van Vechten, J.A., and Bergstresser, T.K., “Electronic structures of semiconductor alloys.” Phys. Rev. B, 1970; 1: 3351-8.

    Article  ADS  Google Scholar 

  12. See Herzog, H.J.; “Crystal structure, lattice parameters and liquidus-solidus curve of the SiGe system,” in Properties of Silicon Germanium and SiGe:Carbon. Erich Kasper and Klara Lyutovich, eds., London, INSPEC, 2000, p. 45.

    Google Scholar 

  13. Jäger, W.; “Ordering in SiGe alloys,” in Properties of Silicon Germanium and SiGe:Carbon. Erich Kasper and Klara Lyutovich, eds., London, INSPEC, 2000, p. 50.

    Google Scholar 

  14. Bublik, V.T., Gorelik, S.S., Zaitsev, A.A., and Polyakov, A.Y., “Diffuse X-ray determination of the energy of mixing and elastic constants of Ge-Si solid solutions.” Phys Status Solidi B, 1974; 66: 427-32.

    Article  CAS  Google Scholar 

  15. Floro, J.A., Chason, E., Lee, S.R., Petersen, G.A., “Biaxial moduli of coherent Si 1-xGex films on Si(001).” Appl. Phys. Lett., 1997; 71: 1694-6.

    Article  CAS  ADS  Google Scholar 

  16. Penn, C.; Fromherz, T; and Bauer, G.; “Energy gaps and band structure of SiGe and their temperature dependence,” in Erich Kasper and Klara Lyutovich, editors, Properties of Silicon Germanium and SiGe:Carbon. London: INSPEC, 2000, p. 125.

    Google Scholar 

  17. Van der Walle, C.B.; “SiGe heterojunctions and band offsets,” in Erich Kasper and Klara Lyutovich, editors, Properties of Silicon Germanium and SiGe:Carbon. London: INSPEC, 2000, p. 149.

    Google Scholar 

  18. Galdin, S.; Dollfus, P.; Aubry-Fortuna, V.; Hesto, P.; and Osten, H.J., “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si(001) and Si1-xGex on Si1-zGez (001).” Semicond. Sci. Technol., 2000; 15: 565-572.

    Article  CAS  ADS  Google Scholar 

  19. Schaffler, F.; “Electron and hole mobilities in Si/SiGe heterostructures,” in Erich Kasper and Klara Lyutovich, editors, Properties of Silicon Germanium and SiGe:Carbon. London: INSPEC, 2000, p. 196.

    Google Scholar 

  20. Cadien, K.C., Elthouky, A.H., and Greene, J.E., “Growth of single-crystal metastable semiconducting (GaSb)1-xGex films.” Appl. Phys. Lett., 1981; 38: 773-5.

    Article  CAS  ADS  Google Scholar 

  21. Shah, S.I.U., Ph.D. Thesis, Crystal growth, atomic ordering, phase transitions in pseudobinary constituents of the metastable quaternary (GaSb) 1-x (Ge 2(1-y) Sn 2y ) x . University of Illinois, 1986.

    Google Scholar 

  22. Shin, J, Hsu, T.C., Hsu, Y., and Stringfellow, G.B., “OMVPE growth of metastable GaAsSb and GaInAsSb alloys using TBAs and TBDMSb.” Journal of Crystal Growth, 1997; 179:1-9.

    Article  CAS  ADS  Google Scholar 

  23. Rieh, J.S., Jagannathan, B., Chen, H., Schonenberg, K.T., Angell, D., Chinthakindi, A., Florkey, J., Golan, F., Greenberg, D., Jeng, S.-J., Khater, M., Pagette, F., Schnabel, C., Smith, P., Stricker, A., Vaed, K., Volant, R., Ahlgren, D., Freeman, G., Stein, K., and Subbanna, S., “SiGe HBT’s with cut-off frequency of 350 GHz.” IEDM, 2002: 771-4.

    Google Scholar 

  24. Jagannathan, B., Khater, M., Pagette, F., Rieh, J.-S., Angell, D., Chen, H., Florkey, J., Golan, F., Greenberg, D.R., Groves, R., Jeng, S.J., Johnson, J., Mengistu, E., Schonenberg, K.T., Schnabel, C.M., Smith, P., Stricker, A., Ahlgren, D., Freeman, G.,  Stein, K., and Subbanna, S., “Self-aligned SiGe npn transistors with 285 GHz fMAX and 207 GHz fT in a manufacturable technology.” IEEE Electron Device Letters, 2002; 23: 258-60.

    Article  CAS  ADS  Google Scholar 

  25. Hafez, Walid; Lai, Jie-Wei; and Feng, Milton; “Vertical scaling of 0.25-µm emitter InP/InGaAs single heterojunction bipolar transistors with fT of 452 GHz.” IEEE Electron Device Letters, 2003; 24: 436-8.

    Article  CAS  Google Scholar 

  26. Ramanathan, K.; Contreras, M.A.; Perkins, C.L.; Asher, S.; Hasoon, F.S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; Ward, J.; Duda, A.; “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells.” Prog. in Photovoltaics: Research and Applications, 2003; 11: 225-30.

    Article  CAS  Google Scholar 

  27. King, R.R.; Fetzer, C.M.; Colter, P.C.; Edmondson, K.M.; Ermer, J.H.; Cotal, H.L.; Hojun Yoon; Stavrides, A.P.; Kinsey, G.; Krut, D.D.; Karam, N.H., “High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures.” Proc. 29th IEEE Photovoltaic Specialists Conference, IEEE, 2002: 776-81.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Semiconductor Alloys. In: The Materials Science of Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68650-9_6

Download citation

Publish with us

Policies and ethics