Advertisement

Special Topics

In this chapter, we discuss a number of special topics, to which we apply concepts presented in the previous chapters. First, we discuss rating curve at a channel cross section during steady and unsteady flow conditions. Then, we describe different methods for flood routing. This is followed by a discussion of the aggradation and degradation of channel bottom due to imbalance between the actual amount of sediment in the flow and the carrying capacity of flow in a channel.

Keywords

Special Topic Froude Number Sediment Discharge Channel Cross Section Wave Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous, (1985), HEC-1, Flood Hydrograph Package: Users’ manual, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA.Google Scholar
  2. Bhallamudi, S. M., and Chaudhry, M. H., 1991, “Numerical modeling of aggra-dation and degradation in alluvial channels,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol 117, no 9, pp. 1145-1164.CrossRefGoogle Scholar
  3. Begin, Z. B., Meyer, D. F. and Schumm, S. A., 1981, “Development of longitu-dinal profiles of alluvial channels in response to base-level lowering.” Earth Surface Processes and Land Forms, vol 6, no 1, pp. 49-68.CrossRefGoogle Scholar
  4. Brush, L. M. and Wolman, M. G., 1960, “Knickpoint behavior in noncohesive material: A laboratory study.” Bulletin of the Geological Society of America, vol 71, pp. 59-74.CrossRefGoogle Scholar
  5. Cunge, J. A., Holly Jr, F. M. and Verwey, A., 1980, Practical Aspects of Compu-tational River Hydraulics, Pitman Advanced Publishing Program, London.Google Scholar
  6. Cunge, J. A., 1969, “On the subject of a flood propagation computation method (Muskingum method,” Jour. Hydraulic Research, Inter. Assoc. Hydraulic Research, vol 7, no 2, pp. 205-230.Google Scholar
  7. Das, A., 2004, “Parameter Estimation for Muskingum Models,” Jour. Irrigation and Drainage Engineering, vol. 130, no. 2, pp. 140-147.CrossRefGoogle Scholar
  8. Dawdy, D. R. and Vanoni, V. A., 1986, “Modeling alluvial channels,” Water Resources Research, vol 22, no 9, pp. 71S-81S.CrossRefGoogle Scholar
  9. Fennema, R. J., and Chaudhry, M. H., 1990, “Numerical Solution of 2-D Free-Surface Flows: Explicit Methods,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol 116, no 8, pp. 1013-1034.CrossRefGoogle Scholar
  10. Geem, Z. W., 2006, “Parameter Estimation for the Nonlinear Muskingum Model Using the BFGS Technique,” Jour. Irrigation and Drainage, vol. 132, no. 5, pp. 474-478.CrossRefGoogle Scholar
  11. Gill, M. A., 1978, “Flood Routing by the Muskingum Method,” Jour. Hydrology, Amsterdam, The Netherlands, vol. 36, pp. 353-363.CrossRefGoogle Scholar
  12. Gill, M. A., 1983a, “Diffusion model for aggrading channels,” Jour. Hyd. Re-search, Inter. Assoc. Hydraulic Research, vol 21, no 5, pp. 355-367.MathSciNetGoogle Scholar
  13. Gill, M. A., 1983b, “Diffusion model for degrading channels,” Jour. Hyd. Re-search, Inter. Assoc. Hyd. Research, vol 21, no 5, pp. 369-378.Google Scholar
  14. Gill, M. A., 1987, “Nonlinear solution of aggradation and degradation in chan-nels,” Jour. Hyd. Research, Inter. Assoc. Hyd. Research, vol 25, no 5, pp. 537-547.Google Scholar
  15. Kim, J. H., Geem, Z. W., and Kim, E. S., 2001, “Parameter Estimation of the Nonlinear Muskingum Model Using Harmony Search,” Jour. Amer. Water Resources Assoc., vol. 37, no. 5, pp. 1131-1138.CrossRefGoogle Scholar
  16. Hayami, S., 1951, “On the propagation of flood waves,” Bulletin of the Dis-aster Prevention Research Institute, Disaster Prevention Research Institute, Kyoto, Japan, vol 1, no 1, pp. 1-16.Google Scholar
  17. Holly F. M., Jr, 1986, “Numerical simulation in alluvial hydraulics,” Proc. 5th Congress of the Asian and Pacific Regional Division, Inter. Assoc. Hyd. Research, Aug. 18-21, Seoul, Korea.Google Scholar
  18. Hromadka, T. V., and DeVries, J. J., 1988, “Kinematic wave and computational error,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol 114, no 2, pp. 207-217, see also discussions and closure, vol 116, no 2, pp. 278-289.CrossRefGoogle Scholar
  19. Jain, S. C., 1981, “River bed aggradation due to overloading,” Jour. Hyd. Div., Amer. Soc. Civ. Engr., vol. 107, no. 1, pp. 120-124.Google Scholar
  20. Jain, S. C. and Park, I., 1989, “Guide for estimating riverbed degradation,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engr., vol. 115, no. 3, pp. 356-366.Google Scholar
  21. Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions of the Euler equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA 14th Fluid And Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259.Google Scholar
  22. Jaramillo, W. F. and Jain, S. C., 1984, “Aggradation and degradation of alluvial-channel beds,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 110, no. 8, pp. 1072-1085.CrossRefGoogle Scholar
  23. Katopodes, N.D., 1982, “On Zero-Inertia and Kinematic Waves,” Jour. Hy-draulics Div., Amer. Soc. Civil Engrs., vol 108, no 11, pp. 1380-1387.Google Scholar
  24. Lane, E.W. and Borland, W.M., 1954, “River-bed scour during floods,” Trans. Amer. Soc. Civ. Engrs., vol 119, pp.1069-1079.Google Scholar
  25. Lee, J. K., and Froehlich, D. C., 1989, “Two-Dimensional Finite-Element Hy-draulic Modeling of Bridge Crossings,” Report FHWA-RD-88-146, U.S. Dept. of Transportation, McLean, VA.Google Scholar
  26. Lu, J-y and Shen, H. W., 1986, “Analysis and comparisons of degradation mod-els,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 112, no. 4, pp. 281-299.CrossRefGoogle Scholar
  27. Lyn D. A., 1987, “Unsteady sediment transport modeling,” Jour. Hyd. Engi-neering, Amer. Soc. Civ. Engr., vol. 113, no. 1, pp. 1-15.CrossRefGoogle Scholar
  28. Lighthill, M. J., and Whitham, G. B., 1955, “On kinematic waves. I: Flood movement in long rivers,” Proc., Royal Society, London, UK, A229, pp. 281-316.CrossRefMathSciNetGoogle Scholar
  29. MacCormack, R. W., 1969, “The Effect of Viscosity in Hypervelocity Impact Cratering,” Amer. Inst. Aero. Astro., Paper 69-354, Cincinnati, OH.Google Scholar
  30. Mohan, S., 1997, “Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm,” Jour. Hyd. Engineering, vol. 13, no. 2, p. 142.Google Scholar
  31. Morris, E. M., and Woolhiser, D. A., 1980, “Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrograph,” Water Resources Research, vol. 16, no. 2, pp. 355-360.CrossRefGoogle Scholar
  32. Newton, C. T., 1951, “An experimental investigation of bed degradation in an open channel,” Trans. Boston Soc. Civ. Engrs., pp. 28-60.Google Scholar
  33. Park, I. and Jain, S. C., 1986, “River-bed profiles with imposed sediment load,”Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 112, no. 4, pp. 267-279.CrossRefGoogle Scholar
  34. Ponce, V. M., Li, R. M., and Simons, D. B., 1978, “Applicability of kinematic and diffusion models,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 104, no. 3, pp. 353-360.Google Scholar
  35. Ponce, V. M., and Theurer, F. D., 1982, “Accuracy criteria in diffusion routing,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 108, no. 6, pp. 747-757.Google Scholar
  36. Ponce, V. M., 1990, Engineering Hydrology, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  37. Ponce, V. M., 1991, “The kinematic wave controversy,” Jour. Hydraulic Engi-neering, Amer. Soc. Civil Engrs., vol. 117, no. 4, pp. 511-525.CrossRefGoogle Scholar
  38. Roache, P. J, 1972, Computational Fluid Dynamics, Hermosa Publishers, Albu-querque, NM.MATHGoogle Scholar
  39. Roberson, J. A., Cassidy, J. J., and Chaudhry, M. H., 1997, Hydraulic engineer-ing, Second ed., John Wiley & Sons, New York, NY.Google Scholar
  40. Seddon, J. A., 1900, “River hydraulics,” Trans., Amer. Soc. Civ. Engrs., pp. 179-229.Google Scholar
  41. Seed, R. B., Nicholson, P. G., Dalrymple, R. A., et al., 2005, “Preliminary Report on the Performance of the New Orleans Levee System in Hurricane Katrina on August 29, 2005,” Report No. UCB/CITRIS-05/01, sponsored by NSF, Nov.Google Scholar
  42. Soni, J. P., Garde, R. J. and Raju, K. G., 1980, “Aggradation in streams due to overloading, ” Jour. Hyd. Div., Proc. Amer. Soc. Civ. Engrs., vol. 106, no. 1, pp. 117-132.Google Scholar
  43. Soni, J. P., Garde, R. J. Raju, K. G., and Kittur, G. J., 1977, “Nonuniform Flow in Aggrading Channels,” Jour. Waterways Port Coastal Ocean Div., Amer Soc. Civ. Engrs., vol 103, no 3, Aug., pp. 321-333.Google Scholar
  44. Suryanarayana, B., 1969, “Mechanics of degradation and aggradation in a lab-oratory flume,” thesis presented for the degree of Doctor of Philosophy, Col-orado State University, Ft. Collins, CO.Google Scholar
  45. Tung, Y.K., 1984, “River Flood Routing by Nonlinear Muskingum Method,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 111, no. 12, pp. 1447-1460.CrossRefGoogle Scholar
  46. Yoon, J., and Padmanabhan, G., 1993, “Parameter Estimation of Linear and Nonlinear Muskingum Models,” Jour. Water Resources Plannning, Amer. Soc. Civ. Engrs., vol. 119, no. 5, pp. 600-610.CrossRefGoogle Scholar
  47. Woolhiser, D. A., and Liggett, J.A., 1967, “Unsteady one-dimensional flow over a plane — the rising hydrograph,” Water Resources Research, vol. 3, no. 3, 753-771.CrossRefGoogle Scholar
  48. Zhang, H. and Kahawita, R., 1987, “Nonlinear model for aggradation in alluvial channels,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol 113, no 3, pp. 353-369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations