Skip to main content

Two-Dimensional Flow

  • Chapter
Open-Channel Flow

In the previous chapters, we considered one-dimensional flows. However, the assumption of one-dimensional flow may not be valid in many situations — e.g., flow in a non-prismatic channel (i.e., channel with varying cross section and alignment), flow downstream of a partially breached dam, or lateral flow from a failed dyke. Although flow in these situations is three-dimensional, we may simplify their analysis by considering them as two-dimensional flows by using vertically averaged quantities. Such an assumption not only simplifies the analysis considerably but yields results of reasonable accuracy.

In this chapter, we discuss the analysis of two-dimensional flows. First, we derive the equations describing unsteady two-dimensional flows. Then, we present explicit and implicit finite difference methods for their solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B., 1979, Computational Hydraulics: Elements of the Theory of Free Surface Flows, Pitman, London.

    MATH  Google Scholar 

  • Alcrudo, F., Garcia-Navarro, P., and Saviron, J. M., 1992, “Flux difference spht-ting for 1D open channel flow equatione,” Inter. Jour. for Numerical Methods in Fluids, vol. 14, pp. 1009-1018.

    Article  MATH  Google Scholar 

  • Anastasiou, K., and Chan, C. T. 1997, “Solution of the 2D Shallow Water Equa-tions Using the Finite Volume Method on Unstructured Triangular Meshes,” Inter. Jour. Numer. Methods Fluids, vol. 24, pp. 1225-1245.

    Article  MATH  Google Scholar 

  • Anderson, D. A., Tannehill J. D. and Pletcher, R.H., 1984, Computational Fluid Mechanics and Heat Transfer. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Anton, H., 1981, Elementary Linear Algebra. Wiley and Sons, New York.

    Google Scholar 

  • Beam, R. M., and Warming, R. F., 1976, “An Implicit Finite-Difference Al-gorithm for Hyperbolic Systems in Conservation-Law Form.” Jour. Comp. Phys., Vol. 22, pp. 87-110.

    Article  MathSciNet  Google Scholar 

  • Benning, R. M., Becker, T. M., and Delgado, A., 2001, “Initial Studies of Pre-dicting Flow Fields With an ANN Hybrid,” Adv. Eng. Software, vol. 32, pp. 895-901.

    Article  MATH  Google Scholar 

  • Benque, J. P., Hauguel, A., and Viollet, P. L., 1982, Engineering Applications of Computational Hydraulics, Pitman Advanced Publishing Program, London, England.

    Google Scholar 

  • Chaudhry, M. H., 1987, Applied Hydraulic Transients. 2nd edition, Chapter 12, Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Chua, L. H. C., and Holz, K. P., 2005, “Hybrid Neural Network-Finite Element River Flow Model,” Jour. Hyd. Engineering, vol. 131, no. 1, pp. 52-59.

    Article  Google Scholar 

  • Cockburn, B., Karniadakis, G., Shu, C. W., and Griebel, M., (eds.), 2000, “Dis-continuous Galerkin Methods: Theory, Computation and Applications,” Lec-ture notes in computational science and engineering, Springer, Berlin.

    Google Scholar 

  • Courant, R., 1936, Differential and Integral Calculus. vol. II, Interscience, New York, NY.

    MATH  Google Scholar 

  • Cunge, J. A., Holly, Jr., F. M., and Verwey, A., l980, Practical Aspects of Com-putational River Hydraulics, Pitman, London.

    Google Scholar 

  • Dibike, Y. B., and Abbott, M. B., 1999, “Application of Artificial Neural Net-works to the Simulation of a Two-Dimensional Flow,” Jour. Hyd. Research, vol. 37, no. 4, pp. 435-446.

    Article  Google Scholar 

  • Fagherazzi, S., Rasetarinera, P., Hussaini, M. Y., and Furbish, D. J., 2004, “Nu-merical Solution of the Dam-Break Problem With a Discontinuous Galerkin Method,” Jour. Hyd. Engineering, vol. 130, no. 6, pp. 532-539.

    Article  Google Scholar 

  • Fennema, R. J., 1985, “Numerical Solution of Two-Dimensional Transient Free-Surface Flows,” Ph. D. Disseration, Washington State University, Pullman, WA.

    Google Scholar 

  • Fennema, R. J., and Chaudhry, M. H., 1986, “Second-Order Numerical Schemes for Unsteady Free-Surface Flows with Shocks,” Water Resources Research, vol. 22, no. 13, pp. 1923-1930.

    Article  Google Scholar 

  • Fennema, R. J., and Chaudhry, M. H., 1987, L“Simulation of One-Dimensional Dam-Break Flows.” Jour. Hydraulic Research, International Association for Hydraulic Research, vol. 25, no 1, pp. 41-51.

    Google Scholar 

  • Fennema, R. J., and Chaudhry, M. H., 1989, “Implicit Methods for Two-dimensional Unsteady Free-Surface Flows,” Jour. Hyd. Research,” Inter. As-soc. for Hydraulic Research, vol. 27, no. 3, pp. 321-332.

    Google Scholar 

  • Fennema, R. J., and Chaudhry, M. H., 1990, “Explicit Methods for Two-dimensional Unsteady Free-Surface Flows,” Jour. Hyd. Engineering,” Amer. Soc. of Civ. Engrs., vol. 116, no. 8, pp. 1013-1034.

    Article  Google Scholar 

  • Franke, C., and Schaback, R., 1997, “Convergence Orders of Meshless Collo-cation Methods and Radial Basis Functions,” Technical Report, Dept. of Mathematics, University of Gottingen, Gottingen, Germany.

    Google Scholar 

  • Gabutti, B., 1983, “On Two Upwind Finite-Difference Schemes for Hyperbolic Equations in Non-Conservative Form,” Computers and Fluids. vol. 11, No. 3, pp. 207-230.

    Article  MATH  MathSciNet  Google Scholar 

  • Garcia, R. and Kahawita, R. A., 1986, “Numerical Solution of the St. Venant Equations with MacCormack Finite-Difference Scheme,” International Jour. for Numerical Methods in Fluids, vol. 6, pp. 259-274.

    Article  MATH  Google Scholar 

  • Godunov, S. K., 1959, “A Finite Difference Method for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics,” Matematich-eski/u/i Sbornik. Novaya Seriya (Mathematics of the USSR-Sbornik),vol. 47, pp. 357-393.

    MathSciNet  Google Scholar 

  • Hardy, R. L., 1971, “Multiquadric Equations of Topography and Other Irregular Surfaces,” Jour. Geophys. Res., vol. 76, no. 26, pp. 1905-1915.

    Article  Google Scholar 

  • Hirsch, H., 1990, Numerical Computation of Internal and External Flows. Vol.2: Computational Methods for Inviscid and Viscous Flows, Wiley, New York, NY.

    Google Scholar 

  • Hon, Y. C., Lu, M. W., Xue, W. M., and Zhu, Y. M., 1997, “Multiquadric Method for The Numerical Solution of a Biphasic Mixture Model,” Appl. Math. Comput., vol. 88, no. 2, pp. 153-175.

    Article  MATH  MathSciNet  Google Scholar 

  • Hon, Y. C., Cheung, K. F., Mao, X. Z., and Kansa, E. J., 1999, “Multiquadric Solution for Shallow Water Equations,” Jour. Hydraulic Engineering, vol. 125, no. 5, pp. 524-533.

    Article  Google Scholar 

  • Jameson, A., Schmidt, W., and Turkel, E., (1981). “Numerical Solutions of the Euler equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes,” Proc., AIAA 14th Fluid And Plasma Dynamics Confer-ence, Palo Alto, CA, AIAA-81-1259.

    Google Scholar 

  • Jimenez, O., 1987, Personal communications with M. H. Chaudhry.

    Google Scholar 

  • Katopodes, N., 1984a, “Two-Dimensional Surges and Shocks in Open Chan-nels,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 110, no. 6, pp. 794-812.

    Article  Google Scholar 

  • Katopodes, N. D., 1984b, “A Dissipative Galerkin Scheme for Open-Channel Flow.” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., Vol. 110, No. HY6, pp. 450-466.

    Article  Google Scholar 

  • Katopodes, N. D., and Strelkoff, T., 1978, “Computing Two- Dimensional Dam-Break Flood Waves.” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 104, no. HY9, pp. 1269-1288.

    Google Scholar 

  • Lax, P. D. and Wendroff, B., 1960, “Systems of Conservation Laws.” Com. Pure Appl. Math., vol. 13, pp. 217-237.

    Article  MATH  MathSciNet  Google Scholar 

  • Lai, C., 1986, “Numerical Modeling of Unsteady Open-Channel Flows,” in Ad-vances in Hydroscience, vol. 14, Academic Press, New York, NY., pp. 161-333.

    Google Scholar 

  • Lax, P. D. and Wendroff, B., 1960, “Systems of Conservation Laws.” Com. Pure Appl. Math., vol. 13, pp. 217-237.

    Article  MATH  MathSciNet  Google Scholar 

  • Leendertse, J. J., 1967, “Aspects of a Computational Model for Long Period Water-Wave Propagation,” Memo RM-5294-PR, Rand Corporation, Santa Monica, CA, May.

    Google Scholar 

  • MacCormacK, R. W., 1969, “The Effect of Viscosity in Hypervelocity Impact Cratering.” Amer. Inst. Aero. Astro., Paper 69-354, Cincinnati, Ohio.

    Google Scholar 

  • Matsutomi, H., 1983, “Numerical Computations of Two-Dimensional Inundation of Rapidly Varied Flows due to Breaking of Dams.” Proc., XX Congress, Inter. Assoc. Hyd. Research, Moscow, USSR, Subject A, vol. II, Sept. pp. 479-488.

    Google Scholar 

  • Mingham, C. G., and Causon, D. M., 1998, “High-Resolution Finite-Volume Method for Shallow Water Flows,” Jour. Hydraulic Engineering, vol. 124, no. 6, pp. 605-614.

    Article  Google Scholar 

  • Morreti, G., 1979, “The λ-Scheme,” Computer and Fluids, vol. 7, pp. 191-205.

    Article  Google Scholar 

  • Richtmyer, R. D., and Morton, K. W., 1967, Difference Methods for Initial-Value Problems, John Wiley and Sons, New York, 2nd Edition.

    MATH  Google Scholar 

  • Sakkas, J. G., and Strelkoff, T., l973, “Dam-Break Flood in a Prismatic Dry Channel.” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 99, no. HY12, pp. 2195-2216.

    Google Scholar 

  • Schwanenberg, D., and Harms, M., 2004, “Discontinuous Galerkin Finite-Element Method for Transcritical Two-Dimensional Shallow Water Flows,” Jour. Hyd. Engineering, vol. 130, no. 5, pp. 412-421.

    Article  Google Scholar 

  • Singh, V. 1996, “Computation of shallow water flow over a porous medium,” Ph.D. thesis, Indian Institute of Technology, Kanpur, India.

    Google Scholar 

  • Sleigh, P. A., Gaskell, P. H., Berzins, M., and Wright, N. G., 1998, “An Unstruc-tured Finite-Volume Algorithm for Predicting Flow in Rivers and Estuaries,” Comput. Fluids, vol. 27, no. 4, 479-508.

    Article  MATH  Google Scholar 

  • Tamamidis, P., and Assanis, D. N. 1993, “Evaluation of Various High-Order-Accuracy Schemes With and Without Flux Limiters,” Int. Jour. Numer. Methods Fluids, vol. 16, pp. 931-948.

    Article  MATH  Google Scholar 

  • Toro, E. F. 1992, “Riemann Problems and the WAF Method for Solving the Two-Dimensional Shallow Water Equations,” Philos. Trans. Royal Soc., Lon-don, 338, 43-68.

    Article  MATH  MathSciNet  Google Scholar 

  • Toro, E. F., 1999, Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Ed., Springer, Berlin.

    MATH  Google Scholar 

  • Yee, H. C., 1989, “A class of high-resolution explicit and implicit shockcapturmg methods,” NASA Technical Memorandum 101088, NASA Ames Research Center, CA.

    Google Scholar 

  • Yoon, T. H., and Kang, S. K., 2004, “Finite Volume Model for Two-Dimensional Shallow Water Flows on Unstructured Grids,” Jour. Hyd. Engineering, vol. 130, no. 7, pp. 678-688.

    Article  Google Scholar 

  • Warming, R. F., and Beam, R. M., 1978, “On the Construction and Application of Implicit Factored Schemes for Conservation Laws.” Proc., Symposium on Computational Fluid Dynamics,SIAM-AMS, vol. 11, NY, pp. 85-129.

    MathSciNet  Google Scholar 

  • Wong, S. M., Hon, Y. C., Li, T. S., Chung, S. L., and Kansa, E. J., 1999, “Multi-Zone Decomposition for Simulation of Time-Dependent Problems Using the Multiquadric Scheme,” Comput. Math. Appl.

    Google Scholar 

  • Zhao, D. H., Shen, H. W., Tabios, G. Q., Lai, J. S., and Tan, W. Y., 1994, “Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins,” Jour. Hyd. Engineering, vol. 120, no. 7, pp. 863-883.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Two-Dimensional Flow. In: Open-Channel Flow. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68648-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68648-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30174-7

  • Online ISBN: 978-0-387-68648-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics