Skip to main content

Finite-Difference Methods

  • Chapter
Book cover Open-Channel Flow
  • 10k Accesses

We discussed in Chapter 12 that de Saint Venant equations are nonlinear partial differential equations for which a closed form solution is not available except for very simplified cases. In Chapter 13, we briefly presented several numerical methods that may be used for their integration. Of these methods, the finite-difference methods have been utilized very extensively; details of some of these methods are outlined in this chapter. Either a conservation or nonconservation form of the governing equations may be used in some methods whereas only one of these forms may be used in others. A conservation form should be preferred, since it conserves various quantities better and it simulates the celerity of wave propagation more accurately than the nonconservation form [Cunge et al., 1980; Miller and Chaudhry, 1989].

We first discuss a number of commonly used terms. Then, a number of explicit and implicit finite-difference methods are presented and the inclusion of boundary conditions in these methods is outlined. The consistency of a numerical scheme is briefly discussed and the stability conditions are then derived. The results computed by different schemes are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B., 1979, Computational Hydraulics; Elements of the Theory of Free Surface Flows, Pitman, London.

    MATH  Google Scholar 

  • Amein, M., and Fang, C. S., 1970,“Implicit Flood Routing in Natural Channels,” Jour. Hyd. Div., Amer. Soc. of Civ. Engrs., vol. 96, no. 12, pp. 2481-2500.

    Google Scholar 

  • Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York.

    MATH  Google Scholar 

  • Beam, R.M., and Warming, R.F., 1976 “An Implicit Finite- Difference Algorithm for Hyperbolic Systems in Conservation-Law Form,” Jour. Comp. Phys., vol. 22, pp. 87-110.

    Article  MathSciNet  Google Scholar 

  • Chaudhry, M. H., 1987, Applied Hydraulic Transients, 2nd ed., Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Cunge, J., Holly, F. M., and Verwey, A., 1980, Practical Aspects of Computa-tional River Hydraulics, Pitman, London.

    Google Scholar 

  • Dammuller, D., Bhallamudi, S. M., and Chaudhry, M. H., 1989, “Modeling of Unsteady Flow in Curved Channels,” Jour Hyd. Engineering, Amer Soc Civ. Engrs, vol 115, no. 11, pp. 1479-1495.

    Google Scholar 

  • Evans, E.P., 1977, “The Behaviour of a Mathematical Model of Open-Channel Flow,” Paper A97, Proc. 17th Congress, Inter. Assoc. for Hyd. Research, Baden Baden, Germany.

    Google Scholar 

  • Fennema, R. J., and Chaudhry, M. H., 1986, “Explicit Numerical Schemes for Unsteady Free-Surface Flows with Shocks,” Water Resources Research, vol. 22, no. 13, pp. 1923-1930.

    Article  Google Scholar 

  • Fennema, R. J., and Chaudhry, M. H., 1987, “Simulation of One-dimensional Dam-break Flows,” Jour. Hyd. Research, vol. 25, no. 1, pp. 41-51.

    Google Scholar 

  • Fread, D. L., and Harbaugh, T. E., 1973, “Transient Simulation of Breached Earth Dams,” Jour. Hyd. Div., Amer. Soc. Civil Engrs., no. 1, pp. 139-154.

    Google Scholar 

  • French, R. H., 1985, Open-Channel Hydraulics, McGraw-Hill, New York, NY.

    Google Scholar 

  • Gabutti, B., 1983, “On Two Upwind Finite-Difference Schemes for Hyperbolic Equations in Non-Conservation Form,” Computers and Fluids, vol. 11, no. 3, pp. 207-230.

    Article  MATH  MathSciNet  Google Scholar 

  • Galperin, B., Blumberg, A. F. and Weisberg, R. H., 1992, ”The Importance of Density Driven Circulation in Well-mixed Estuaries: The Tampa Bay Expe-rience,” Proc. Water Forum, Amer. Soc. of Civil Engrs., 11 pp.

    Google Scholar 

  • Huang, J., and C.C.S. Song, 1985, “Stability of Dynamic Flood Routing Schemes,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 111, no. 12, pp.1497-1505.

    Article  Google Scholar 

  • Isaacson, E., Stoker, J. J., and Troesch, B. A., 1954, “Numerical Solution of Flood Prediction and River Regulation Problems (Ohio-Mississippi Floods),” Report II, Inst. Math. Sci. Rept. IMM-NYU-205, New York University.

    Google Scholar 

  • Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions of the Euler equations by Finite Volume Methods Using Runge-Kutta Schemes,” Time-Stepping AIAA 14th Fluid And Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259.

    Google Scholar 

  • Katopodes, N. and Wu, C-T., 1986, “Explicit Computation of Discontinous Channel Flow,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 112, no. 6, pp. 456-475.

    Article  Google Scholar 

  • Koren, V.I., 1967, “The Analysis of Stability of Some Explicit Finite Differ-ence Schemes for the Integration of Saint-Venant Equations,” Meterologiya i Gidrologiya, no. 1 (in Russian).

    Google Scholar 

  • Lax, P. D., 1954, “Weak Solutions of Nonlinear Hyperbolic Partial Differential Equations and Their Numerical Computation,” Communications on Pure and Applied Mathematics, vol. 7, pp. 159-163.

    Article  MATH  MathSciNet  Google Scholar 

  • Lai, C., 1986, “Numerical Modeling of Unsteady Open-Channel Flow,” in Ad-vances in Hydroscience, vol. 14, Academic Press, New York., pp. 161-333.

    Google Scholar 

  • Leendertse, J. J., 1967, “Aspects of a Computational Model for Long Period Water-Wave Propagation,”Memo RM-5294-PR, Rand Corporation, Santa Monica, CA, May.

    Google Scholar 

  • Liggett, J. A., and Woolhiser, D. A., 1967, “Difference Solutions of Shallow-water equations,” Jour. Engineering Mech. Div., Amer. Soc. Civil Engrs., vol. 93, no. EM2, pp. 39-71.

    Google Scholar 

  • Liggett, J. A., and Cunge, J. A., 1975, “Numerical Methods of Solution of Un-steady Flow Equations,” in Unsteady Open Channel Flow, Mahmood, K. and Yevjevich, V. (eds.), Water Resources Publications, Fort Collins.

    Google Scholar 

  • Lyn, D.A. and Goodwin, P., 1987, “Stability of a General Preissmann Scheme,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 113, no. 1, pp. 16-27.

    Google Scholar 

  • MacCormacK, R.W., 1969, “The Effect of Viscosity in Hypervelocity Impact Cratering,” Amer. Inst. Aero. Astro., Paper 69-354, Cincinnati, Ohio.

    Google Scholar 

  • Moretti, G., 1979, “The Lambda Scheme,” Computers and Fluids, vol 7, pp. 191-205.

    Article  MATH  MathSciNet  Google Scholar 

  • Meselhe, E. A., and Holly, F. M., Jr., 1997, “Invalidity of Preissmann Scheme for Transcritical Flow,” Jour. Hydraulic Engineering, vol. 123, no. 7, pp. 652655.

    Google Scholar 

  • Pandolfi, M., 1975, “Numerical Experiments on Free Surface Water Motion with Bores,” Proc. 4th Int. Conf. on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics No. 35, Springer-Verlag, pp. 304-312.

    Google Scholar 

  • Price, R. K., 1974, “Comparison of Four Numerical Flood Routing Methods,” Jour., Hyd. Div., Amer. Soc. Civ. Engrs., vol. 100, no. 7, pp. 879-899.

    Google Scholar 

  • Preissmann, A., and Cunge, J., 1961, “Calcul du mascaret sur machines electroniques,” La Houille Blanche, no. 5, pp. 588-596.

    Google Scholar 

  • Richtmyer, R. D., and Morton, K. W., 1967, Difference Methods for Initial Value Problems, 2nd. ed., Interscience, New York.

    MATH  Google Scholar 

  • Roache, P. J., 1972, Computational Fluid Dynamics, Hermosa Publishers.

    Google Scholar 

  • Samuels, P.G., and Skeels, C.P., 1990, “Stability Limits for Preissmann’s Scheme,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol 116, no. 8, pp. 997-1012.

    Article  Google Scholar 

  • Stoker, J. J., 1957, Water Waves, Interscience, New York.

    MATH  Google Scholar 

  • Strelkoff, T., 1970, “Numerical Solution of St. Venant Equations,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, no. 1, pp. 223-252.

    Google Scholar 

  • Terzidis, G., and Strelkoff, T., 1970, “Computation of Open Channel Surges and Shocks,” Jour. Hydraulics Div., Amer. Soc. Civ. Engrs., vol. 96, no. 12, pp. 2581-2610.

    Google Scholar 

  • Vasiliev, O. F., Gladyshev, M. T., Pritvits, N. A., and Sudobiocher, V. G., 1965, “Numerical Method for the Calculation of Shock Wave Propagation in Open Channels,” Proc., 11th Congress, Inter. Assoc. for Hydraulic Research, vol. 3, paper 3.44, 14pp.

    Google Scholar 

  • Venutelli, M. 2002, “Stability and Accuracy of Weighted Four-Point Implicit Finite Difference Schemes for Open Channel Flow,” Jour. Hydraulic Engi-neering, Amer. Soc. Civ. Engrs., vol. 128, no. 3, pp. 281-288.

    Article  Google Scholar 

  • Verboom, G. K., Stelling, G.S. and Officier, M. J., 1982, “Boundary Conditions for the Shallow Water Equations,” Engineering Applications of Computa-tional Hydraulics, vol. 1, (Abbot, M. B. and Cunge, J. A., eds.) Pitman, Boston.

    Google Scholar 

  • Yen, C-L., and Lin, C.-H., 1986, “Numerical Stability in Unsteady Supercritical Flow Simulation,” Proc. 5th Congress Asian and Pacific Regional Div., Int. Assoc. Hyd. Research, Aug.

    Google Scholar 

  • Younus, M., 1994, “A depth-averaged k-ϵ turbulence model for the computation of free-surface flow,” Jour. Hyd. Research, vol. 32, no. 3, pp. 415-444.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Finite-Difference Methods. In: Open-Channel Flow. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68648-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68648-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30174-7

  • Online ISBN: 978-0-387-68648-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics