Skip to main content

Numerical Methods

  • Chapter
Book cover Open-Channel Flow
  • 10k Accesses

In Section 12-3, we showed that the unsteady flow in open channels is described by a set of hyperbolic partial differential equations. These equations describe the conservation of mass and momentum in terms of the partial derivatives of dependent variables: flow velocity, V, and flow depth, y. However, for practical applications, we need to know the value of these variables instead of the values of their derivatives. Therefore, we integrate the governing equations. Because of the presence of nonlinear terms, a closed-form solution of these equations is not available, except for very simplified cases. Therefore, they are integrated numerically for which several numerical methods have been presented.

In this chapter, we introduce the method of characteristics and discuss necessary boundary and initial conditions for the numerical solution of governing equations. Various available numerical methods are presented and their advantages and disadvantages are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B., 1966, An Introduction to the Method of Characteristics, Thames and Hudson, London, and American Elsevier, New York, NY.

    Google Scholar 

  • Abbott, M. B., 1975, “Method of Characteristics,” Chapter 3 and ”Weak Solu-tion of the equations of Open Channel Flow,” Chapter 7 of Unsteady Open Channel Flow, (Mahmood, K., and Yevjevich, V. eds.), Water Resources Publications, Fort Collins, CO.

    Google Scholar 

  • Abbott, M. B., 1979, Computational Hydraulics; Elements of the Theory of Free Surface Flows, Pitman Publishing Ltd., London.

    MATH  Google Scholar 

  • Abbott, M. B., and Verwey, A., 1970, “Four-Point Method of Characteristics,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol 96, Dec., pp. 2549-2564.

    Google Scholar 

  • Amein, M., and Fang, C. S., 1970, “Implicit Flood Routing in Natural Channels,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, Dec., pp. 2481-2500.

    Google Scholar 

  • Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York, NY.

    MATH  Google Scholar 

  • Baker, J. A., 1983, Finite-Element Computational Fluid Dynamics, McGraw-Hill, New York, NY.

    Google Scholar 

  • Brebbia, C. A., and Dominguez, J., 1989, Boundary Elements, An Introductory Course, Computational Mechanics Publications, London.

    MATH  Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, NY.

    Google Scholar 

  • Chaudhry, M. H., 1987, Applied Hydraulic Transients, 2nd ed., Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Craya, A., 1946, “Calcul graphique des regimes variables dans les canaux,” La Houille Blanche, no. 1, Nov. 1945-Jan 1946, pp. 79-138, and no. 2, Mar 1946, pp. 117-130.

    Google Scholar 

  • Crossley, A. J., Wright, N. G., and Whitlow, C. D., 2003, “Local Time Stepping for Modeling Open Channel Flows,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 129, no. 6, pp.455-462.

    Article  Google Scholar 

  • Cunge, J., Holly, F. M., and Verwey, A., 1980, Practical Aspects of Computa-tional River Hydraulics, Pitman, London.

    Google Scholar 

  • Dulhoste, J.F., Georges, D., and Besancon, G, 2004, “Nonlinear Control of Open-Channel Water Flow based on Collocation Control Model,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 130, no. 3, pp. 254-266.

    Article  Google Scholar 

  • Fread, D. L., and Harbaugh, T. E., 1973, “Transient Simulation of Breached Earth Dams,” Jour. Hyd. Div., Amer. Soc. Civil Engrs., Jan., pp. 139-154.

    Google Scholar 

  • Katopodes, N., 1984, “A Dissipative Galerkin Scheme for Open-Channel Flow,” Jour. Hydraulic Engineering, Amer. Soc. Civ. Engrs., vol. 110, April, pp. 450-466.

    Article  Google Scholar 

  • Isaacson, E., Stoker, J. J., and Troesch, B. A., 1954, “Numerical Solution of Flood Prediction and River Regulation Problems (Ohio-Mississippi Floods),” Report II, Inst. Math. Sci. Rept. IMM-NYU-205, New York University.

    Google Scholar 

  • Lai, C., 1986, “Numerical Modeling of Unsteady Open-Channel Flow,” in Ad-vances in Hydroscience, vol. 14, Academic Press, New York., pp. 161-333.

    Google Scholar 

  • Lai, C., 1988, “Comprehensive Method of Characteristics Models for Flow Sim-ulation,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 114, no. 9, pp. 1074-1097.

    Article  Google Scholar 

  • Lax, P. D., 1954, “Weak Solutions of Nonlinear Hyperbolic Partial Differential Equations and Their Numerical Computation,” Communications on Pure and Applied Mathematics,” vol. 7, pp. 159-163.

    Article  MATH  MathSciNet  Google Scholar 

  • Leendertse, J. J., 1967, “Aspects of a Computational Model for Long Period Water-Wave Propagation,”Memo RM-5294-PR, Rand Corporation, May.

    Google Scholar 

  • Liggett, J. A., 1984, “The Boundary Element Method - Some Fluid Applications,” in Multi-Dimensional Fluid Transients, (Chaudhry, M. H., and Martin, C. S. eds.), Amer. Soc. Mech. Engrs., Dec., New York, NY, pp. 1-8.

    Google Scholar 

  • Litrico, X., and Fromion V., 2004, “Frequency Modeling of Open-Channel Flow,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 130, no. 8, pp. 806-815.

    Article  Google Scholar 

  • Massau, J., 1889, “L’integration graphique and Appendice au memoire sur l’integration graphique,” Assoc. des Ingenieurs sortis des Ecoles Speciales de Gand, Belgium, Annales, vol. 12, pp. 185-444.

    Google Scholar 

  • Price, R. K., 1974, “Comparison of Four Numerical Flood Routing Methods,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 100, July, pp. 879-899.

    Google Scholar 

  • Richtmyer, R. D., and Morton, K. W., 1967, Difference Methods for Initial Value Problems, 2nd. ed., Interscience, New York, NY.

    MATH  Google Scholar 

  • Stoker, J. J., 1957, Water Waves, Interscience, New York, NY.

    MATH  Google Scholar 

  • Strelkoff, T., 1970, “Numerical Solution of St. Venant Equations,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, January, pp. 223-252.

    Google Scholar 

  • Terzidis, G., and Strelkoff, T., 1970, “Computation of Open Channel Surges and Shocks,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, Dec., pp. 2581-2610.

    Google Scholar 

  • Ying, X., Khan, A. A., and Wang, S. S. Y., 2004, “Upwind Conservative Scheme for the Saint Venant Equations,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 130, no. 10, pp. 977-987.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Numerical Methods. In: Open-Channel Flow. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68648-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68648-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30174-7

  • Online ISBN: 978-0-387-68648-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics