Numerical Methods

In Section 12-3, we showed that the unsteady flow in open channels is described by a set of hyperbolic partial differential equations. These equations describe the conservation of mass and momentum in terms of the partial derivatives of dependent variables: flow velocity, V, and flow depth, y. However, for practical applications, we need to know the value of these variables instead of the values of their derivatives. Therefore, we integrate the governing equations. Because of the presence of nonlinear terms, a closed-form solution of these equations is not available, except for very simplified cases. Therefore, they are integrated numerically for which several numerical methods have been presented.

In this chapter, we introduce the method of characteristics and discuss necessary boundary and initial conditions for the numerical solution of governing equations. Various available numerical methods are presented and their advantages and disadvantages are briefly discussed.


Negative Characteristic Open Channel Flow Riemann Invariant Venant Equation Characteristic Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M. B., 1966, An Introduction to the Method of Characteristics, Thames and Hudson, London, and American Elsevier, New York, NY.Google Scholar
  2. Abbott, M. B., 1975, “Method of Characteristics,” Chapter 3 and ”Weak Solu-tion of the equations of Open Channel Flow,” Chapter 7 of Unsteady Open Channel Flow, (Mahmood, K., and Yevjevich, V. eds.), Water Resources Publications, Fort Collins, CO.Google Scholar
  3. Abbott, M. B., 1979, Computational Hydraulics; Elements of the Theory of Free Surface Flows, Pitman Publishing Ltd., London.MATHGoogle Scholar
  4. Abbott, M. B., and Verwey, A., 1970, “Four-Point Method of Characteristics,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol 96, Dec., pp. 2549-2564.Google Scholar
  5. Amein, M., and Fang, C. S., 1970, “Implicit Flood Routing in Natural Channels,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, Dec., pp. 2481-2500.Google Scholar
  6. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York, NY.MATHGoogle Scholar
  7. Baker, J. A., 1983, Finite-Element Computational Fluid Dynamics, McGraw-Hill, New York, NY.Google Scholar
  8. Brebbia, C. A., and Dominguez, J., 1989, Boundary Elements, An Introductory Course, Computational Mechanics Publications, London.MATHGoogle Scholar
  9. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, NY.Google Scholar
  10. Chaudhry, M. H., 1987, Applied Hydraulic Transients, 2nd ed., Van Nostrand Reinhold, New York, NY. Google Scholar
  11. Craya, A., 1946, “Calcul graphique des regimes variables dans les canaux,” La Houille Blanche, no. 1, Nov. 1945-Jan 1946, pp. 79-138, and no. 2, Mar 1946, pp. 117-130.Google Scholar
  12. Crossley, A. J., Wright, N. G., and Whitlow, C. D., 2003, “Local Time Stepping for Modeling Open Channel Flows,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 129, no. 6, pp.455-462.CrossRefGoogle Scholar
  13. Cunge, J., Holly, F. M., and Verwey, A., 1980, Practical Aspects of Computa-tional River Hydraulics, Pitman, London.Google Scholar
  14. Dulhoste, J.F., Georges, D., and Besancon, G, 2004, “Nonlinear Control of Open-Channel Water Flow based on Collocation Control Model,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 130, no. 3, pp. 254-266.CrossRefGoogle Scholar
  15. Fread, D. L., and Harbaugh, T. E., 1973, “Transient Simulation of Breached Earth Dams,” Jour. Hyd. Div., Amer. Soc. Civil Engrs., Jan., pp. 139-154.Google Scholar
  16. Katopodes, N., 1984, “A Dissipative Galerkin Scheme for Open-Channel Flow,” Jour. Hydraulic Engineering, Amer. Soc. Civ. Engrs., vol. 110, April, pp. 450-466.CrossRefGoogle Scholar
  17. Isaacson, E., Stoker, J. J., and Troesch, B. A., 1954, “Numerical Solution of Flood Prediction and River Regulation Problems (Ohio-Mississippi Floods),” Report II, Inst. Math. Sci. Rept. IMM-NYU-205, New York University.Google Scholar
  18. Lai, C., 1986, “Numerical Modeling of Unsteady Open-Channel Flow,” in Ad-vances in Hydroscience, vol. 14, Academic Press, New York., pp. 161-333.Google Scholar
  19. Lai, C., 1988, “Comprehensive Method of Characteristics Models for Flow Sim-ulation,” Jour. Hydraulic Engineering, Amer. Soc. Civil Engrs., vol. 114, no. 9, pp. 1074-1097.CrossRefGoogle Scholar
  20. Lax, P. D., 1954, “Weak Solutions of Nonlinear Hyperbolic Partial Differential Equations and Their Numerical Computation,” Communications on Pure and Applied Mathematics,” vol. 7, pp. 159-163.MATHCrossRefMathSciNetGoogle Scholar
  21. Leendertse, J. J., 1967, “Aspects of a Computational Model for Long Period Water-Wave Propagation,”Memo RM-5294-PR, Rand Corporation, May.Google Scholar
  22. Liggett, J. A., 1984, “The Boundary Element Method - Some Fluid Applications,” in Multi-Dimensional Fluid Transients, (Chaudhry, M. H., and Martin, C. S. eds.), Amer. Soc. Mech. Engrs., Dec., New York, NY, pp. 1-8.Google Scholar
  23. Litrico, X., and Fromion V., 2004, “Frequency Modeling of Open-Channel Flow,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 130, no. 8, pp. 806-815.CrossRefGoogle Scholar
  24. Massau, J., 1889, “L’integration graphique and Appendice au memoire sur l’integration graphique,” Assoc. des Ingenieurs sortis des Ecoles Speciales de Gand, Belgium, Annales, vol. 12, pp. 185-444.Google Scholar
  25. Price, R. K., 1974, “Comparison of Four Numerical Flood Routing Methods,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 100, July, pp. 879-899.Google Scholar
  26. Richtmyer, R. D., and Morton, K. W., 1967, Difference Methods for Initial Value Problems, 2nd. ed., Interscience, New York, NY.MATHGoogle Scholar
  27. Stoker, J. J., 1957, Water Waves, Interscience, New York, NY.MATHGoogle Scholar
  28. Strelkoff, T., 1970, “Numerical Solution of St. Venant Equations,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, January, pp. 223-252. Google Scholar
  29. Terzidis, G., and Strelkoff, T., 1970, “Computation of Open Channel Surges and Shocks,” Jour. Hyd. Div., Amer. Soc. Civ. Engrs., vol. 96, Dec., pp. 2581-2610.Google Scholar
  30. Ying, X., Khan, A. A., and Wang, S. S. Y., 2004, “Upwind Conservative Scheme for the Saint Venant Equations,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 130, no. 10, pp. 977-987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations