Advertisement

Hollow-Core Microstructured Polymer Optical Fibres

This chapter is devoted to mPOFs that guide in a hollow core. It describes two methods for fabricating these fibres and explains their transmission characteristics. Common issues affecting the performance are discussed as well as the various applications.

Keywords

Photonic Crystal Surface Mode Photonic Bandgap Transmission Loss Material Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeeluck, A K, Litchinitser, A N, Headley, C, and Eggleton, B (2002). Analysis of spectral characteristics of photonic bandgap waveguides. Optics Express, 10(23):1320-33.PubMedADSGoogle Scholar
  2. Argyros, A, Birks, T A, Leon-Saval, S G, Cordeiro, C M B, Luan, F, and Russell, P St J (2005a). Photonic bandgap with an index step of one percent. Optics Express, 13(1):309-14.CrossRefADSGoogle Scholar
  3. Argyros, A, Birks, T A, Leon-Saval, S G, Cordeiro, C M B, and Russell, P St J (2005b). Guidance properties of low-contrast photonic bandgap fibres. Optics Express, 13(7):2503-11.CrossRefADSGoogle Scholar
  4. Argyros, A, Large, M C J, and van Eijkelenborg, M A (2006a). Progress and potential of hollow-core microstructured optical fibres. In Proceedings of the International Plastic Optical Fibres conference, Seoul, Korea.Google Scholar
  5. Argyros, A, Manos, S, van Eijkelenborg, M A, Large, M C J, and Poladian, L (2006b). Applications of microstructured polymer optical fibres: hollow-core and graded-index fibres. In Proceedings of the OptoElectronics and Communication Conference, volume 11, pages 5D2-2, Kaohsiung, Taiwan.Google Scholar
  6. Argyros, A, van Eijkelenborg, M A, Large, M C J, and Bassett, I M (2006c). Hollow-core microstructured polymer optical fibers. Optics Letters, 31 (2):172-4.CrossRefADSGoogle Scholar
  7. Benabid, F, Couny, F, Knight, J C, Birks, T A, and Russell, P St J (2005). Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 434(7032):488-91.CrossRefPubMedADSGoogle Scholar
  8. Benabid, F, Knight, J C, Antonopoulos, G, and Russell, P St J (2002). Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298(5592):399-402.CrossRefPubMedADSGoogle Scholar
  9. Couny, F, Benabid, F, and Light, P S (2006). Large pitch kagome-structured hollow-core PCF. In Proceedings of the European Conference on Optical Communications, page Th4.2.4.Google Scholar
  10. Cox, F, Argyros, A, and Large, M C J (2006). Liquid-filled hollow-core microstructured polymer optical fiber. Optics Express, 14(9):4135-40.CrossRefPubMedADSGoogle Scholar
  11. Fini, J M (2004). Microstructure fibres for optical sensing in gases and liquids. Measurement Science and Technology, 5:1120-8.CrossRefMathSciNetADSGoogle Scholar
  12. Humbert, G, Knight, J C, Bouwmans, G, Russell, P St J, Williams, D P, Roberts, P J, and Mangan, B J (2004). Hollow-core photonic crystal fibers for beam delivery. Optics Express, 12(8):1477-84.CrossRefPubMedADSGoogle Scholar
  13. Issa, N A, Argyros, A, van Eijkelenborg, M A, and Zagari, J (2003). Identifying hollow waveguide guidance in air-cored microstructured optical fibres. Optics Express, 11(9):996-1001.PubMedADSCrossRefGoogle Scholar
  14. Johnson, S G, Ibanescu, M, Skorobogatiy, M, Weisberg, O, Engeness, T D, Soljačić, M, Jacobs, S A, Joannopoulos, J D, and Fink, Y (2001). Low loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express, 9(13):748-79.CrossRefPubMedADSGoogle Scholar
  15. Koike, Y (1996). Status of POF in Japan. In Proceedings of the International Plastic Optical Fibres conference, volume 5, pages 1-8, Paris, France.Google Scholar
  16. Litchinitser, N M, Abeeluck, A K, Headley, C, and Eggleton, B J (2002). Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 27 (18):1592-4.CrossRefPubMedADSGoogle Scholar
  17. Roberts, P J, Couny, F, Sabert, H, Mangan, B J, Williams, D P, Farr, L, Mason, M W, Tomlinson, A, Birks, T A, Knight, J C, and Russell, P St J (2005). Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 13(1):236-44.CrossRefPubMedADSGoogle Scholar
  18. Russell, P St J (2003). Photonic crystal fibers. Science, 299:358-62.CrossRefPubMedADSGoogle Scholar
  19. Russell, P St-J (2006). Photonic-crystal fibers. JOURNAL OF LIGHTWAVE TECHNOLOGY, 24(12).Google Scholar
  20. Shephard, J D, MacPherson, W N, Maier, P R J, Jones, J D C, Hand, D P, Mohebbi, M, George, A K, Roberts, P J, and Knight, J C (2005). Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Optics Express, 13(18):7139-44.CrossRefPubMedADSGoogle Scholar
  21. Temelkuran, B, Hart, S D, Benoit, G, Joannopoulos, J D, and Fink, Y (2002). Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 420:650-3.CrossRefPubMedADSGoogle Scholar
  22. Wadsworth, W J, Joly, N, Knight, J C, Birks, T A, Biancalana, F, and Russell, P St J (2004). Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers. Optics Express, 12 (2):299-309.CrossRefPubMedADSGoogle Scholar
  23. West, J A, Smith, C M, Borrelli, N F, Allan, D C, and Koch, K W (2004). Surface modes in air-core photonic band-gap fibers. Optics Express, 12(8): 1485-96.CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations