The Modelling and Design of Microstructured Polymer Optical Fibres

The first part of this chapter is about algorithms for modelling microstructured fibres. We also begin by briefly summarising the two major conventions for naming modes. The ideas behind the algorithms for calculating modes are then discussed but detailed results available in the literature are not reproduced here. It is impossible to be comprehensive or even perfectly balanced when covering such a wide field. Some references to both commercial and free software are given. We also sometimes give examples of how these algorithms have been used to analyse interesting features of microstructured fibres.


Photonic Crystal Optic Express Optic Letter Leaky Mode Beam Propagation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, Milton and Stegun, Irene A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 9th Dover printing, 10th GPO printing edition.MATHGoogle Scholar
  2. Argyros, A, Bassett, I M, van Eijkelenborg, M A, Large, M C J, Zagari, J, Nicorovici, N A P, McPhedran, R C, and de Sterke, C M 2001. Ring struc-tures in microstructured polymer optical fibres. Optics Express, 9(13):813-20.CrossRefPubMedADSGoogle Scholar
  3. Argyros, A, Issa, N A, Bassett, I M, and van Eijkelenborg, M A 2004. Microstructured optical fibres for single-polarisation air-guidance. Optics Letters, 29(1):20-3.CrossRefPubMedADSGoogle Scholar
  4. Baggett, J C, Monro, T M, Furusawa, K, Finazzi, V, and Richardson, D J 2003. Understanding bending losses in holey optical fibers. Optics Communications, 227(4-6):317-335.CrossRefADSGoogle Scholar
  5. Bjarklev, A, Broeng, J, and Bjarklev, A S 2003. Photonic crystal fibres. Kluwer academic publishers, Boston, USA.Google Scholar
  6. Broeng, J, Mogilevstev, D, Barkou, S E, and Bjarklev, A 1999. Photonic crystal fibers: A new class of optical waveguides. Optical Fiber Technology, 5 (3):305-330.CrossRefADSGoogle Scholar
  7. Carlone, G, amd M De Sario, A D’Orazio, amd V Petruzzelli, L Mescia, and Prudenzano, F 2005. Design of double-clad erbium-doped holey fiber amplifier. Journal of Non-crystalline Solids, 351(21-23):1840-1845.CrossRefADSGoogle Scholar
  8. Chiang, K S 1994. Review of numerical and approximate methods for the modal-analysis of general optical dielectric wave-guides. Optical And Quantum Electronics, 26(3):S113-S134.CrossRefMathSciNetGoogle Scholar
  9. Coello, C A Coello and Lamont, G B 2004. Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore.MATHGoogle Scholar
  10. Deb, Kalyanmoy 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and Sons, Chichester.MATHGoogle Scholar
  11. Domachuk, P, Chapman, A, Magi, E, Steel, M J, and Nguyen, H C 2005. Transverse characterization of high air-fill fraction tapered photonic crystal fiber. Applied Optics, 44(19):3885-3892. CrossRefPubMedADSGoogle Scholar
  12. D’Orazio, A, de Sario, M, Mescia, L, Petruzzelli, V, and Prudenzano, F 2005. Design of double-clad ytterbium-doped microstructured fibre laser. Applied Surface Science, 248(1-4):499-502.CrossRefADSGoogle Scholar
  13. Dudley, J M, Provino, L, Grossard, N, Maillotte, H, Windeler, R S, Eggleton, B J, and Coen, S 2002. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America B - Optical Physics, 19(4):765-771.ADSGoogle Scholar
  14. Eggleton, B J, Westbrook, P S, White, C A, Kerbage, C, Windeler, R S, and Burdge, G L 2000. Cladding-mode-resonances in air-silica microstructure optical fibers. Journal of Lightwave Technology, 18(8):1084-1100.CrossRefADSGoogle Scholar
  15. Eggleton, B J, Westbrook, P S, Windeler, R S, and Spalter, S 1999. Grating resonances in air-silica microstructured optical fibers. Optics Letters, 24 (21):1460-1462.CrossRefPubMedADSGoogle Scholar
  16. Finazzi, V, Monro, T M, and Richardson, D J 2003a. The role of confinement loss in highly nonlinear silica holey fibers. IEEE Photonics Technology Letters, 15(9):1246-1248.CrossRefADSGoogle Scholar
  17. Finazzi, V, Monro, T M, and Richardson, D J 2003b. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America, 20(7):1427-1436.CrossRefADSGoogle Scholar
  18. Fini, J M 2003. Analysis of microstructure optical fibers by radial scattering decomposition. Optics Letters, 28(12):992-994.CrossRefPubMedADSGoogle Scholar
  19. Fini, J M 2004. Microstructured fibres for optical sensing in gases and liquids. Measurement Science and Technology, 15(6):1120-8.CrossRefADSGoogle Scholar
  20. Fini, J M 2005. Design of solid and microstructure fibers for suppression of higher-order modes. Optics Express, 13(9):3477-3490.CrossRefPubMedADSGoogle Scholar
  21. Fuerbach, A, Steinvurzel, P, Bolger, J A, and Eggleton, B J 2005. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers. Optics Express, 13(8):2977-2987.CrossRefPubMedADSGoogle Scholar
  22. Genty, G, Lehtonen, M, Ludvigsen, H, and Kaivola, M 2004. Enhanced bandwidth of supercontinuum generated in microstructured fibers. Optics Express, 12(15):3471-3480.CrossRefPubMedADSGoogle Scholar
  23. Gloge, D 1971. Weakly guiding fibers. Applied Optics, 10(10):2252.CrossRefADSGoogle Scholar
  24. Goldberg, D E 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Masschusetts.MATHGoogle Scholar
  25. Holland, John H 1995. Hidden Order, How Adaptation Builds Complexity. Helix Books, Cambridge, Massachusetts.Google Scholar
  26. Issa, N A 2004. High numerical aperture in multimode microstructured optical fibers. Applied Optics, 43(33):6191-6197.CrossRefPubMedADSGoogle Scholar
  27. Issa, N A 2005. Modes and propagation in microstructured optical fibres. PhD dissertation, The University of Sydney, Sydney, Australia.Google Scholar
  28. Issa, N A and Padden, W E 2004. Light acceptance properties of multimode microstructured optical fibers: Impact of multiple layers. Optics Express, 12 (14):3224-3235. CrossRefPubMedADSGoogle Scholar
  29. Issa, N A and Poladian, L 2003. Vector wave expansion method for leaky modes of microstructured optical fibers. Journal of Lightwave Technology, 21 (4):1005-1012.CrossRefADSGoogle Scholar
  30. Issa, N A, van Eijkelenborg, M A, Fellew, M, Cox, F, Henry, G, and Large, M C J 2004. Fabrication and study of microstructured optical fibers with elliptical holes. Optics Letters, 29(12):1336-1338.CrossRefPubMedADSGoogle Scholar
  31. Kerbage, C and Eggleton, B J 2002. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express, 10(5):246-255.PubMedADSGoogle Scholar
  32. Kerbage, C, Hale, A, Yablon, A, Windeler, R S, and Eggleton, B J 2001. Integrated all-fiber variable attenuator based on hybrid microstructure fiber. Applied Physics Letters, 79(19):3191-3193.CrossRefADSGoogle Scholar
  33. Kerbage, C, Steinvurzel, P, Reyes, P, Westbrook, P S, Windeler, R S, Hale, A, and Eggleton, B J 2002. Highly tunable birefringent microstructured optical fiber. Optics Letters, 27(10):842-844.CrossRefPubMedADSGoogle Scholar
  34. Kerbage, C E, Eggleton, B J, Westbrook, P S, and Windeler, R S 2000. Experimental and scalar beam propagation analysis of an air-silica microstructure fiber. Optics Express, 7(3):113-122.CrossRefPubMedADSGoogle Scholar
  35. Kerrinckx, Emmanuel, Bigot, Laurent, Douay, Marc, and Quiquempois, Yves 2004. Photonic crystal fiber design by means of a genetic algorithm. Optics Express, 12(9):1990-1995.CrossRefPubMedADSGoogle Scholar
  36. Koshiba, M 2002. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Transactions on Electronics, E85C(4):881-888.Google Scholar
  37. Koshiba, M and Saitoh, K 2001. Numerical verification of degeneracy in hexagonal photonic crystal fibers. IEEE Photonics Technology Letters, 13 (12):1313-1315.CrossRefADSGoogle Scholar
  38. Koshiba, M and Saitoh, K 2005. Simple evaluation of confinement losses in holey fibers. Optics Communications, 253(1-3):95-98.CrossRefADSGoogle Scholar
  39. Krug, P A, Poladian, L, and Large, M I (2000). Advanced fibre design by evolutionary computation. In Proceedings of the 25th Australian Conference on Optical Fibre Technology, pages 74-76.Google Scholar
  40. Kuhlmey, B T (2005). Modelling microstructured optical fibres with the multipole method. In 14th International Workshop on Optical Waveguide Theory and Numerical Modelling, page 18.Google Scholar
  41. Lako, S, Seres, J, Apai, P, Balazs, J, Windeler, R S, and Szipocs, R 2003. Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation. Applied Physics B - Lasers and Optics, 76(3):267-275.ADSGoogle Scholar
  42. Larsen, T T, Bjarklev, A, Hermann, D S, and Broeng, J 2003. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11 (20):2589-2596.PubMedADSCrossRefGoogle Scholar
  43. Liu, H R, Yan, M, Shum, P, Ghafouri-Shiraz, H, and Liu, D M 2004. Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers. Optics Express, 12(18):4269-4274.CrossRefPubMedADSGoogle Scholar
  44. Manos, S, Poladian, L, Bentley, P, and Large, M (2005). Photonic device design using multiobjective evolutionary algorithms. In Lecture Notes In Computer Science : International Conference on Evolutionary Multi-criterion Optimization, volume 3410, pages 636-650.Google Scholar
  45. Manos, Steven, Mitchell, Arnan, Lech, Margaret, and Poladian, Leon 2002. Automated synthesis of microstructured holey optical fibres using numerical optimisation. In Proceedings of the 27th Australian Conference on Optical Fibre Technology, 8th-11th July, Darling Harbour, Sydney, Australia, pages 47-49.Google Scholar
  46. Marcuse, D 1974. Theory of dielectric optical waveguides. Academic Press, New York.Google Scholar
  47. Michalewicz, Zbigniew and Fogel, David B (2004). How to Solve It: Modern Heuristics. Springer.Google Scholar
  48. Mogilevtsev, D, Broeng, J, Barkou, S E, and Bjarklev, A 2001. Design of polarization-preserving photonic crystal fibres with elliptical pores. Journal of Optics A - Pure and Applied Optics, 3(6):S141-S143.CrossRefADSGoogle Scholar
  49. Monro, T M, Belardi, W, Furusawa, K, Baggett, J C, Broderick, N G R, and Richardson, D J 2001. Sensing with microstructured optical fibres. Measurement Science and Technology, 12(7):854-858.CrossRefADSGoogle Scholar
  50. Nguyen, H C, Domachuk, P, Steel, M J, and Eggleton, B J 2004. Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber. IEEE Photonics Technology Letters, 16(8):1852-1854.CrossRefADSGoogle Scholar
  51. Noh, H R and Jhe, W 2002. Atom optics with hollow optical systems. Physics Reports-Review Section of Physics Letters, 372(3):269-317.Google Scholar
  52. Peyrilloux, A, Fevrier, S, Marcou, J, Berthelot, L, Pagnoux, D, and Sansonetti, P 2002. Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres. Journal Of Optics A, 4(3):257-262.Google Scholar
  53. Poladian, L (2004). Modelling surface imperfection induced mode mixing in multimode microstructured fibres. In Proceedings of the Conference on Lasers and Electro Optics, San Francisco, USA.Google Scholar
  54. Poladian, L (2005). Beyond computing leaky modes. In 14th International Workshop on Optical Waveguide Theory and Numerical Modelling, page 18.Google Scholar
  55. Poladian, L, Issa, N, and Monro, T 2002. Fourier decomposition algorithm for leaky modes of fibres with arbitrary genometry. Optics Express, 10 (10):449-454.PubMedADSGoogle Scholar
  56. Poletti, F, Finazzi, V, Monro, T M, Broderick, Tse, V, and Richardson, D J 2005. Inverse design and fabrication tolerences of ultra-flattened dispersion holey fibers. Optics Ex[ress, 13(10):3728-3736.Google Scholar
  57. Prudenzano, F 2005. Erbium-doped hole-assisted optical fiber amplifier: Design and optimization. Journal of Lightwave Technology, 23(1):330-340.CrossRefADSGoogle Scholar
  58. Rayleigh, J W S 1892. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine, 34:481-502. Google Scholar
  59. Riishede, J, Laegsgaard, J, Broeng, J, and Bjarklev, A 2004. All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm. Journal of Optics A - Pure and Applied Optics, 6(7):667-670.CrossRefADSGoogle Scholar
  60. Saitoh, K and Koshiba, M 2004. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 12(10):2027-2032.CrossRefPubMedADSGoogle Scholar
  61. Scarmozzino, R, Gopinath, A, Pregla, R, and Helfert, S 2000. Numerical techniques for modeling guided-wave photonic devices. IEEE Journal Of Selected Topics In Quantum Electronics, 6(1):150-162.CrossRefGoogle Scholar
  62. Schwefel, H-P 1995. Evolution and Optimum Seeking. Wiley, New York.Google Scholar
  63. Snitzer, E 1961. Cylindrical dielectric waveguide modes. Journal Of The Optical Society Of America, 51(5):491.CrossRefMathSciNetADSGoogle Scholar
  64. Snyder, A W and Love, J D 1983. Optical waveguide theory. Chapman and Hall, New York.Google Scholar
  65. Steinvurzel, P, Eggleton, B J, de Sterke, C M, and Steel, M J 2005. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre. Electronics Letters, 41(8):463-464.CrossRefGoogle Scholar
  66. van Eijkelenborg, M A, Zagari, J, and Poladian, L (2001). Optimising holey fibre designs. In Proceedings of the OECC/IOCC Conference Incorporating ACOFT, 2-5th July, pages 526-527.Google Scholar
  67. Vassallo, C 1997. 1993-1995 Optical mode solvers. Optical And Quantum Electronics, 29(2):95-114.CrossRefGoogle Scholar
  68. Westbrook, P S, Eggleton, B J, Windeler, R S, Hale, A, Strasser, T A, and Burdge, G L 2000. Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. IEEE Photonics Technology Letters, 12 (5):495-497.CrossRefADSGoogle Scholar
  69. White, T P, Kuhlmey, B T, McPhedran, R C, Maystre, D, Renversez, G, Martijn de Sterke, C, and Botton, L C 2002. Multipole method for microstructured optical fibers i: Formulation. Journal of the Optical Society of America B, 19:2322-30.CrossRefADSGoogle Scholar
  70. Wilcox, S, Botten, L C, McPhedran, R C, Poulton, C G, and M de Sterke, C (2005). Modeling of defect modes in photonic crystals using the fictitious source superposition method. Physical Review E, 71(5).Google Scholar
  71. Zhu, Z M and Brown, T G 2002. Full-vectorial finite-difference analysis of microstructured optical fibers. Optics Express, 10(17):853-864.PubMedADSGoogle Scholar
  72. Zsigri, B, Laegsgaard, J, and Bjarklev, A 2004. A novel photonic crystal fibre design for dispersion compensation. Journal of Optics A - Pure and Applied Optics, 6(7):717-720.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations