Guiding Concepts in Microstructured Fibres

This chapter builds on the concepts in Chapter 2 but focusses on differences between microstructured and conventional fibres. It begins with a description of the two different guidance mechanisms specific to MOFs. It then goes on to discuss two important ways in which the optical properties of MOFs differ from conventional fibres, namely confinement loss and dispersion. An understanding of these differences is crucial to appreciating how MOFs have expanded the ways and the range in which optical fibres can be used.


Photonic Bandgap Core Mode Optic Express Material Dispersion Optic Letter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeeluck, A K, Litchinitser, A N, Headley, C, and Eggleton, B (2002). Analysis of spectral characteristics of photonic bandgap waveguides. Optics Express, 10(23):1320-33.PubMedADSGoogle Scholar
  2. Argyros, A (2002). Guided modes and loss in Bragg fibre. Optics Express, 10(24):1411-7.PubMedADSGoogle Scholar
  3. Argyros, A, Bassett, I M, van Eijkelenborg, M A, and Large, M C J (2004). Analysis of ring-structured Bragg fibres for TE mode guidance. Optics Express, 12(12):2688-98.CrossRefPubMedADSGoogle Scholar
  4. Argyros, A, Birks, T A, Leon-Saval, S G, Cordeiro, C M B, Luan, F, and Russell, P St J (2005a). Photonic bandgap with an index step of one percent. Optics Express, 13(1):309-14.CrossRefADSGoogle Scholar
  5. Argyros, A, Birks, T A, Leon-Saval, S G, Cordeiro, C M B, and Russell, P St J (2005b). Guidance properties of low-contrast photonic bandgap fibres. Optics Express, 13(7):2503-11.CrossRefADSGoogle Scholar
  6. Argyros, A, van Eijkelenborg, M A, Large, M C J, and Bassett, I M (2006). Hollow-core microstructured polymer optical fibers. Optics Letters, 31(2):172-4.CrossRefPubMedADSGoogle Scholar
  7. Issa, N A (2004). High numerical aperture in multimode microstructured optical fibers. Applied Optics, 43(33):6191-7.CrossRefPubMedADSGoogle Scholar
  8. Knight, J C, Birks, T A, Cregan, R F, Russell, P S, and de Sandro, J P (1998). Large mode area photonic crystal fibre. Electronics Letters, 34(13):1347-8.CrossRefGoogle Scholar
  9. Knight, J C, Birks, T A, Russell, P St J, and Atkin, D M (1996). All-silica single mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19):1547-9.CrossRefPubMedADSGoogle Scholar
  10. Koike, Y and Ishigure, T (1999). Bandwidth and transmission distance achieved by POF. IEICE Transactions on Communications, E82-B:1287-1295.Google Scholar
  11. Kuhlmey, B T, McPhedran, R C, and de Sterke, C M (2002). Modal cutoff in microstructured optical fibers. Optics Letters, 27(19):1684-6.CrossRefPubMedADSGoogle Scholar
  12. Leon-Saval, S G, Birks, T A, Joly, N Y, George, A K, Wadsworth, W J, Kakarantzas, G, and Russell, P S J (2005). Splice-free interfacing of photonic crystal fibers. Optics Letters, 30(13):1629-31.CrossRefPubMedADSGoogle Scholar
  13. Leon-Saval, S G, Birks, T A, Wadsworth, W J, and Russell, P St J (2004). Supercontinuum generation in submicron fibre waveguides. Optics Express, 12:2864-2869.CrossRefPubMedADSGoogle Scholar
  14. Litchinitser, N M, Abeeluck, A K, Headley, C, and Eggleton, B J (2002). Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 27 (18):1592-4.CrossRefPubMedADSGoogle Scholar
  15. Parker, A R, McPhedran, R C, McKenzie, D R, Botten, L C, and Nicorovici, N P (2001). Photonic engineering: Aphrodite’s iridescence. Nature, 409:36-7.CrossRefPubMedADSGoogle Scholar
  16. Ranka, J K, Windeler, R S, and Stentz, A J (2000). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25(1):25-7.CrossRefPubMedADSGoogle Scholar
  17. Vienne, G, Xu, Y, Jakobsen, C, Deyerl, H-J, Jensen, J, Sørensen, T, Hansen, T, Huang, Y, Terrel, M, Lee, R, Mortensen, N, Broeng, J, Simonsen, H, Bjarklev, A, and Yariv, A (2004). Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports. Optics Express, 12 (15):3500-8.CrossRefPubMedADSGoogle Scholar
  18. White, T P, McPhedran, R C, de Sterke, C M, Botten, L C, and Steel, M J (2001). Confinement losses in microstructured optical fibers. Optics Letters, 26 (21):1660-2.CrossRefPubMedADSGoogle Scholar
  19. Wilcox, S, Botten, L, de Sterke, C M, Kuhlmey, B, McPhedran, R, Fussell, D, and Tomljenovic-Hanic, S (2005). Long wavelength behavior of the fundamental mode in microstructured optical fibers. Optics Express, 13:1978-84.CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations