Skip to main content

Guiding Concepts in Microstructured Fibres

  • Chapter
Microstructured Polymer Optical Fibres
  • 1603 Accesses

This chapter builds on the concepts in Chapter 2 but focusses on differences between microstructured and conventional fibres. It begins with a description of the two different guidance mechanisms specific to MOFs. It then goes on to discuss two important ways in which the optical properties of MOFs differ from conventional fibres, namely confinement loss and dispersion. An understanding of these differences is crucial to appreciating how MOFs have expanded the ways and the range in which optical fibres can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeeluck, A K, Litchinitser, A N, Headley, C, and Eggleton, B (2002). Analysis of spectral characteristics of photonic bandgap waveguides. Optics Express, 10(23):1320-33.

    PubMed  ADS  Google Scholar 

  • Argyros, A (2002). Guided modes and loss in Bragg fibre. Optics Express, 10(24):1411-7.

    PubMed  ADS  Google Scholar 

  • Argyros, A, Bassett, I M, van Eijkelenborg, M A, and Large, M C J (2004). Analysis of ring-structured Bragg fibres for TE mode guidance. Optics Express, 12(12):2688-98.

    Article  PubMed  ADS  Google Scholar 

  • Argyros, A, Birks, T A, Leon-Saval, S G, Cordeiro, C M B, Luan, F, and Russell, P St J (2005a). Photonic bandgap with an index step of one percent. Optics Express, 13(1):309-14.

    Article  CAS  ADS  Google Scholar 

  • Argyros, A, Birks, T A, Leon-Saval, S G, Cordeiro, C M B, and Russell, P St J (2005b). Guidance properties of low-contrast photonic bandgap fibres. Optics Express, 13(7):2503-11.

    Article  CAS  ADS  Google Scholar 

  • Argyros, A, van Eijkelenborg, M A, Large, M C J, and Bassett, I M (2006). Hollow-core microstructured polymer optical fibers. Optics Letters, 31(2):172-4.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Issa, N A (2004). High numerical aperture in multimode microstructured optical fibers. Applied Optics, 43(33):6191-7.

    Article  PubMed  ADS  Google Scholar 

  • Knight, J C, Birks, T A, Cregan, R F, Russell, P S, and de Sandro, J P (1998). Large mode area photonic crystal fibre. Electronics Letters, 34(13):1347-8.

    Article  Google Scholar 

  • Knight, J C, Birks, T A, Russell, P St J, and Atkin, D M (1996). All-silica single mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19):1547-9.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Koike, Y and Ishigure, T (1999). Bandwidth and transmission distance achieved by POF. IEICE Transactions on Communications, E82-B:1287-1295.

    Google Scholar 

  • Kuhlmey, B T, McPhedran, R C, and de Sterke, C M (2002). Modal cutoff in microstructured optical fibers. Optics Letters, 27(19):1684-6.

    Article  PubMed  ADS  Google Scholar 

  • Leon-Saval, S G, Birks, T A, Joly, N Y, George, A K, Wadsworth, W J, Kakarantzas, G, and Russell, P S J (2005). Splice-free interfacing of photonic crystal fibers. Optics Letters, 30(13):1629-31.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Leon-Saval, S G, Birks, T A, Wadsworth, W J, and Russell, P St J (2004). Supercontinuum generation in submicron fibre waveguides. Optics Express, 12:2864-2869.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Litchinitser, N M, Abeeluck, A K, Headley, C, and Eggleton, B J (2002). Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 27 (18):1592-4.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Parker, A R, McPhedran, R C, McKenzie, D R, Botten, L C, and Nicorovici, N P (2001). Photonic engineering: Aphrodite’s iridescence. Nature, 409:36-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ranka, J K, Windeler, R S, and Stentz, A J (2000). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25(1):25-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Vienne, G, Xu, Y, Jakobsen, C, Deyerl, H-J, Jensen, J, Sørensen, T, Hansen, T, Huang, Y, Terrel, M, Lee, R, Mortensen, N, Broeng, J, Simonsen, H, Bjarklev, A, and Yariv, A (2004). Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports. Optics Express, 12 (15):3500-8.

    Article  PubMed  ADS  Google Scholar 

  • White, T P, McPhedran, R C, de Sterke, C M, Botten, L C, and Steel, M J (2001). Confinement losses in microstructured optical fibers. Optics Letters, 26 (21):1660-2.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wilcox, S, Botten, L, de Sterke, C M, Kuhlmey, B, McPhedran, R, Fussell, D, and Tomljenovic-Hanic, S (2005). Long wavelength behavior of the fundamental mode in microstructured optical fibers. Optics Express, 13:1978-84.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Guiding Concepts in Microstructured Fibres. In: Microstructured Polymer Optical Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68617-2_3

Download citation

Publish with us

Policies and ethics