History and Applications of Polymer Fibres and Microstructured Fibres

This chapter places the rest of the book in context. It describes the history and state-of-the-art of both polymer fibres (POFs) and microstructured optical fibres (MOFs). The physical properties of these fibre types differ considerably in terms of the materials used and the possible waveguide geometries, and these form the basis for the difference in their applications. This chapter outlines both the physical differences and the major applications of each. The applications of POFs are described in more detail because most of the applications of microstructured fibres reappear in later chapters.


Photonic Crystal Photonic Bandgap Optic Express Polymer Fibre Large Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agronovitch, V M, Kajzar, F, and Lee, C Y-C (1996). Photoactive Organic Materials: Science and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  2. Argyros, A (2002). Guided modes and loss in Bragg fibre. Optics Express, 10(24):1411-7.PubMedADSGoogle Scholar
  3. Argyros, A, Bassett, I M, van Eijkelenborg, M A, and Large, M C J (2004). Analysis of ring-structured Bragg fibres for TE mode guidance. Optics Express, 12(12):2688-98.CrossRefPubMedADSGoogle Scholar
  4. Argyros, A, Bassett, I M, van Eijkelenborg, M A, Large, M C J, Zagari, J, Nicorovici, N A P, McPhedran, R C, and de Sterke, C M (2001). Ring structures in microstructured polymer optical fibres. Optics Express, 9(13):813-20.CrossRefPubMedADSGoogle Scholar
  5. Bartlett, R J, Philip-Chandy, R, Eldridge, P, Merchant, D F, Morgan, R, and Scully, P J (2000). Plastic optical fibre sensors and devices. Transactions of the Institute of Measurement and Control, 22(5):431-57.Google Scholar
  6. Bayindir, M, Sorin, F, Abouraddy, A F, Viens, J, Hart, S D, Joannopoulos, J D, and Fink, Y (2004). Metal-insulator-semiconductor optoelectronic fibres. Nature, 431.Google Scholar
  7. Benabid, F, Couny, F, Knight, J C, Birks, T A, and Russell, P St J (2005). Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 434(7032):488-91.CrossRefPubMedADSGoogle Scholar
  8. Benabid, F, Knight, J, and Russell, P St J (2002a). Particle levitation and guidance in hollow-core photonic crystal fiber. Optics Express, 10(21):1195-1203.ADSGoogle Scholar
  9. Benabid, F, Knight, J C, Antonopoulos, G, and Russell, P St J (2002b). Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298(5592):399-402.CrossRefADSGoogle Scholar
  10. Birks, T A, Knight, J C, and Russell, P St J (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13):961-3.CrossRefPubMedADSGoogle Scholar
  11. Broderick, N G R, Monro, T M, Bennett, P J, and Richardson, D J (1999). Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 24(20):1395-7.CrossRefPubMedADSGoogle Scholar
  12. Charra, F, Agronovitch, V M, and Kajzar, F, editors (2003). Organic Nanophotonics. Springer.Google Scholar
  13. Cregan, R F, Mangan, B J, Knight, J C, Birks, T A, Russell, P St J, Roberts, P J, and Allan, D C (1999). Single-mode photonic band gap guidance of light in air. Science, 285:1537-9.CrossRefPubMedGoogle Scholar
  14. Dall, R G, Hoogerland, M D, Tierney, D, Baldwin, K G H, and Buckman, S J (2002). Single mode hollow optical fibres for atom guiding. Applied Physics B: Lasers and Optics, 74(1):11-8.CrossRefADSGoogle Scholar
  15. Daum, W, Krauser, J, Zamzow, P E, and Ziemann, O (2002). POF Polymer Optical Fibers for Data Communication. Springer Verlag, Berlin, Germany, first edition.Google Scholar
  16. Dellemann, G, Engeness, T D, Skorobogatiy, M, and Kolodny, Uri (2003). Perfect mirrors extend hollow-core fiber applications. Photonics Spectra, 37:60.Google Scholar
  17. Dupuis, A, Guo, N, Gao, Y, Godbout, N, Lacroix, S, Dubois, C., and Skorobogatiy, M. (2007). Porous double-core biodegradable polymer optical fiber. Optics Letters, 32:109.CrossRefPubMedADSGoogle Scholar
  18. Emiliyanov, G, Jensen, J B, Bang, O, Hoiby, P E, Pedersen, L H, Kjær, E M, and Lindvold, L (2007). Localized biosensing with Topas microstructured polymer optical fiber. Optics Letters, 32(5):460-462. Erratum: p. 1059.CrossRefPubMedADSGoogle Scholar
  19. Feng, X, Mairaj, A K, Hewak, D W, and Monro, T M (2005). Nonsilica glasses for holey fibers. Journal Lightwave Technology, 23(6):2046-54.CrossRefADSGoogle Scholar
  20. Fini, J M (2004). Microstructure fibres for optical sensing in gases and liquids. Measurement Science and Technology, 5:1120-8.CrossRefMathSciNetADSGoogle Scholar
  21. Fink, Y, Winn, J N, Fan, S H, Chen, C P, Michel, J, Joannopoulos, J D, and Thomas, E L (1998). A dielectric omnidirectional reflector. Science, 282 (5394):1679-1682.CrossRefPubMedADSGoogle Scholar
  22. Hassani, A and Skorobogatiy, M (2006). Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Optics Express, 14:11616.CrossRefPubMedADSGoogle Scholar
  23. Hecht, J (1999). City of Light: The Story of Fiber Optics. Oxford University Press, UK.Google Scholar
  24. Issa, N A, van Eijkelenborg, M A, Fellew, M, Cox, F, Henry, G, and Large, M C J (2004). Fabrication and study of microstructured optical fibers with elliptical holes. Optics Letters, 29(12):1336-8.CrossRefPubMedADSGoogle Scholar
  25. Jensen, J, Hoiby, J P, Emiliyanov, G, Bang, O, Pedersen, L, and Bjarklev, A (2005). Selective detection of antibodies in microstructured polymer optical fibers. Optics Express, 13(15):5883-9.CrossRefPubMedADSGoogle Scholar
  26. Kaino, T (1992). Chapter 1. In Hornak, L A, editor, Polymers for lightwave and integrated optics. Marcel Dekker, New York.Google Scholar
  27. Kaiser, V P and Astle, H W (1974). Low-loss single-material fibers made from pure fused silica. Bell System Technical Journal, 53:1021-39.Google Scholar
  28. Kaiser, V P, Marcatili, E A, and Miller, S E (1973). A new optical fiber. Bell System Technical Journal, 52(2):265-9.Google Scholar
  29. Kajzar, F and Swalen, J D, editors (1996). Organic Thin Films for waveguiding Nonlinear Optics. Taylor & Francis, Gordon and Breach. Advances in non-linear optics Vol 3.Google Scholar
  30. Kiang, K M, Frampton, K, Monro, T M, Moore, R, Tucknott, J, Hewak, D W, Richardson, D J, and Rutt, H N (2002). Extruded single mode non-silica glass holey optical fibres. Electronics Letters, 38(12):546-7.CrossRefGoogle Scholar
  31. Knight, J C, Arriaga, J, Birks, T A, Wadsworth, W J, and Russell, P St J (2000). Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 12(7):807-9.CrossRefADSGoogle Scholar
  32. Knight, J C, Birks, T A, Russell, P St J, and Atkin, D M (1996). All-silica single mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19):1547-9.CrossRefPubMedADSGoogle Scholar
  33. Koike, Y (1998). POF from the past to the future. In Proceedings of the International Plastic Optical Fibres conference, volume 7, pages 1-8, Berlin, Germany.Google Scholar
  34. Koike, Y and Nihei, E (1991). Low loss graded index and single mode polymer optical fiber. In ACS Polymer Preprints - Photonic Polymer for Device Applications, volume 32, pages 111-112, New York, USA.Google Scholar
  35. Kuang, K S C and Cantwell, W J (2003). The use of plastic optical fibre sensors for monitoring the dynamic response of fibre composite beams. Measurement Science and Technology, 14:736-45.CrossRefADSGoogle Scholar
  36. Kuang, K S C, Cantwell, W J, and Scully, P J (2002). An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements. Measurement Science and Technology, 13:1523-34.CrossRefADSGoogle Scholar
  37. Kumar, V V Ravi Kanth, George, A K, Knight, J C, and Russell, P St J (2003). Tellurite photonic crystal fiber. Optics Express, 11(20):2641-5.PubMedADSCrossRefGoogle Scholar
  38. Kumar, V V Ravi Kanth, George, A K, Reeves, W H, Knight, J C, Russell, P St J, Omenetto, F G, and Taylor, A J (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 10 (25):1520-5.PubMedADSGoogle Scholar
  39. Kuriki, K, Shapira, O, Hart, S, Benoit, G, Kuriki, Y, Viens, J, Bayindir, M, Joannopoulos, J, and Fink, Y (2004). Hollow multilayer photonic bandgap fibers for nir applications. Optics Express, 12(8):1510-7.CrossRefPubMedADSGoogle Scholar
  40. Large, M C J, Ponrathnam, S, Argyros, A, Bassett, I, Punjari, N S, Cox, F, Barton, G W, and van Eijkelenborg, M A (2006). Microstructured polymer optical fibres: New opportunities and challenges. In Burillo, G, Ogawa, T, Rau, I, and Kajzar, F, editors, Molecular Crystals and Liquid Crystals Journal, Special issue, Proceedings of the 8th international conference on frontiers of polymers and advanced materials, volume 446, pages 219-31. Taylor & Francis.Google Scholar
  41. Limpert, J, Schreiber, T, Nolte, S, Zellmer, H, Tünnermann, A, Iliew, R, Lederer, F, Broeng, J, Vienne, G, Petersson, A, and Jakobsen, C (2003). High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express, 11(7):818-23.CrossRefPubMedADSGoogle Scholar
  42. Liu, H Y, Liu, H B, and Peng, G D (2006). Polymer optical fibre Bragg gratings based fibre laser. Optics Communications, 266(1):132-5.CrossRefADSGoogle Scholar
  43. Liu, H Y, Liu, H B, Peng, G D, and Chu, P L (2003). Observation of type I and type II gratings behavior in polymer optical fiber. Optics Communications, 220 (4-6):337-43.CrossRefADSGoogle Scholar
  44. MacChesney, J B, O’Connor, P B, and Presby, H M (1974). A new technique for preparation of low-loss and graded index optical fibers. Proceedings of the IEEE, 62(9):1280-1.CrossRefGoogle Scholar
  45. Mach, P, Dolinski, M, Baldwin, K W, Rogers, J A, Kerbage, C, Windeler, R S, and Eggleton, B J (2002). Tunable microfluidic optical fiber. Applied Physics Letters, 80(23):4294-6.CrossRefADSGoogle Scholar
  46. Marcatili, E A J (1973). Air clad optical fiber waveguide. US Patent 3712705.Google Scholar
  47. Monro, T M, West, Y D, Hewak, D W, Broderick, N G R, and Richardson, D J (2000). Chalcogenide holey fibres. Electronics Letters, 36(24):1998-2000.CrossRefGoogle Scholar
  48. Murofushi, M (1996). Low loss perfluorinated POF. In Proceedings of the International Plastic Optical Fibres conference, pages 17-23, Paris, France.Google Scholar
  49. Muto, S, Sato, H, and Hosaka, T (1994). Optical humidity sensor using fluorescent plastic fiber and its application to breathing condition monitor. Japanese Journal of Applied Physics, 33(10):6060-4.CrossRefADSGoogle Scholar
  50. Myaing, M T, Ye, J Y, Norris, T B, Thomas, T, Jr, J R Baker, Wadsworth, W J, Bouwmans, G, Knight, J C, and Russell, P St J (2003). Enhanced two-photon biosensing with double-clad photonic crystal fiber. Optics Letters, 28 (14):1224-6.CrossRefPubMedADSGoogle Scholar
  51. Nocivelli, A (2006). Plastic fibre promises ubiquitous optical access. FibreSystems Europe in association with LIGHTWAVE Europe, page 14.Google Scholar
  52. O’Keeffe, S, Fitzpatrick, C, and Lewis, E (2005). Ozone measurement in visible region: an optical fibre sensor system. Electronics Letters, 41(24):1317-9.CrossRefGoogle Scholar
  53. Ortigosa-Blanch, A, Knight, J C, Wadsworth, W J, Arriaga, J, Mangan, B J, Birks, T A, and Russell, P St J (2000). Highly birefringent photonic crystal fibers. Optics Letters, 25(18):1325-27.CrossRefPubMedADSGoogle Scholar
  54. Palais, J C (1992). Fiber Optic Communications. Prentice Hall, Englewood Cliffs, New Jersey, USA.Google Scholar
  55. Peng, G D (2002). Prospects of POF and grating for sensing. In Proceedings of the International Conference on Optical Fiber Sensors, volume 1, pages 714-6, Portland, USA.Google Scholar
  56. Peng, G D, Liu, H Y, Chu, P L, and Wang, T (2005). Sensor applications of polymer optical Bragg gratings. In Proceedings of the International Conference on Polymer Optical Fiber, volume 14, pages 213-6, Hong Kong, China.Google Scholar
  57. Polishuk, P (2006). Plastic optical fibers branch out. IEEE communications Magazine.Google Scholar
  58. Ranka, J K, Windeler, R S, and Stentz, A J (2000). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25(1):25-7.CrossRefPubMedADSGoogle Scholar
  59. Reeves, W, Knight, J C, Russell, P St J, and Roberts, P (2002). Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10 (14):609-13.PubMedADSGoogle Scholar
  60. Ritari, T, Tuominen, J, Ludvigsen, H, Petersen, J, Sørensen, T, Hansen, T, and Simonsen, H (2004). Gas sensing using air-guiding photonic bandgap fibers. Optics Express, 12(17):4080-7.CrossRefPubMedADSGoogle Scholar
  61. Roberts, P J, Couny, F, Sabert, H, Mangan, B J, Williams, D P, Farr, L, Mason, M W, Tomlinson, A, Birks, T A, Knight, J C, and Russell, P St J (2005). Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 13(1):236-44.CrossRefPubMedADSGoogle Scholar
  62. Russell, P St-J (2006). Photonic-crystal fibers. Journal Of Lightwave Technology, 24(12).Google Scholar
  63. Saitoh, K, Koshiba, M, Hasegawa, T, and Sasaoka, E (2003). Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 11(8):843-52.PubMedADSCrossRefGoogle Scholar
  64. Skorobogatiy, M (2005a). Design principles of multi-fiber resonant directional couplers with hollow Bragg fibers: example of a 3x3 coupler. Optics Letters, 30:2849.CrossRefADSGoogle Scholar
  65. Skorobogatiy, M (2005b). Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector. Optics Letters, 30:2991.CrossRefADSGoogle Scholar
  66. Skorobogatiy, M and Dupuis, A (2007). Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Applied Physics Letters, 90:113514.CrossRefADSGoogle Scholar
  67. Skorobogatiy, M and Guo, N (2007). Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers. Optics Letters, 32:900.CrossRefPubMedADSGoogle Scholar
  68. Skorobogatiy, M and Kabashin, A V (2006). Photon crystal waveguide-based surface plasmon resonance bio-sensor. Applied Physics Letters, 89.Google Scholar
  69. Vali, V and Chang, D B (1992). Low index of refraction optical fiber with tubular core and/or cladding. US Patent 5155792.Google Scholar
  70. van Eijkelenborg, M A (2004). Imaging with microstructured polymer fibre. Opics Express, 12(2):342-6.CrossRefADSGoogle Scholar
  71. van Eijkelenborg, M A, Large, M C J, Argyros, A, Zagari, J, Manos, S, Issa, N A, Bassett, I, Fleming, S, McPhedran, R C, de Sterke, C M, and Nicorovici, N A P (2001). Microstructured polymer optical fibre. Optics Express, 9(7):319-27.CrossRefPubMedADSGoogle Scholar
  72. Vienne, G, Xu, Y, Jakobsen, C, Deyerl, H-J, Jensen, J, Sørensen, T, Hansen, T, Huang, Y, Terrel, M, Lee, R, Mortensen, N, Broeng, J, Simonsen, H, Bjarklev, A, and Yariv, A (2004). Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports. Optics Express, 12 (15):3500-8.CrossRefPubMedADSGoogle Scholar
  73. Wadsworth, W J, Percival, R M, Bouwmans, G, Knight, J C, Birks, T A, Hedley, T D, and Russell, P St J (2004). Very high numerical aperture fibers. IEEE Photonics Technology Letters, 16(3):843-5.CrossRefADSGoogle Scholar
  74. Wadsworth, W J, Percival, R M, Bouwmans, G, Knight, J C, and Russell, P St J (2003). High power air-clad photonic crystal fiber laser. Optics Express, 11(1):48-53.PubMedADSCrossRefGoogle Scholar
  75. Zhou, J, Tajima, K, Nakajima, K, Kurokawa, K, Fukai, C, Matsui, T, and Sankawa, I (2005). Progress on low loss photonic crystal fibers. Optical Fiber Technology, 11(2):101-10.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations