Skip to main content

History and Applications of Polymer Fibres and Microstructured Fibres

  • Chapter
Microstructured Polymer Optical Fibres

This chapter places the rest of the book in context. It describes the history and state-of-the-art of both polymer fibres (POFs) and microstructured optical fibres (MOFs). The physical properties of these fibre types differ considerably in terms of the materials used and the possible waveguide geometries, and these form the basis for the difference in their applications. This chapter outlines both the physical differences and the major applications of each. The applications of POFs are described in more detail because most of the applications of microstructured fibres reappear in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agronovitch, V M, Kajzar, F, and Lee, C Y-C (1996). Photoactive Organic Materials: Science and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Argyros, A (2002). Guided modes and loss in Bragg fibre. Optics Express, 10(24):1411-7.

    PubMed  ADS  Google Scholar 

  • Argyros, A, Bassett, I M, van Eijkelenborg, M A, and Large, M C J (2004). Analysis of ring-structured Bragg fibres for TE mode guidance. Optics Express, 12(12):2688-98.

    Article  PubMed  ADS  Google Scholar 

  • Argyros, A, Bassett, I M, van Eijkelenborg, M A, Large, M C J, Zagari, J, Nicorovici, N A P, McPhedran, R C, and de Sterke, C M (2001). Ring structures in microstructured polymer optical fibres. Optics Express, 9(13):813-20.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bartlett, R J, Philip-Chandy, R, Eldridge, P, Merchant, D F, Morgan, R, and Scully, P J (2000). Plastic optical fibre sensors and devices. Transactions of the Institute of Measurement and Control, 22(5):431-57.

    Google Scholar 

  • Bayindir, M, Sorin, F, Abouraddy, A F, Viens, J, Hart, S D, Joannopoulos, J D, and Fink, Y (2004). Metal-insulator-semiconductor optoelectronic fibres. Nature, 431.

    Google Scholar 

  • Benabid, F, Couny, F, Knight, J C, Birks, T A, and Russell, P St J (2005). Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 434(7032):488-91.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Benabid, F, Knight, J, and Russell, P St J (2002a). Particle levitation and guidance in hollow-core photonic crystal fiber. Optics Express, 10(21):1195-1203.

    CAS  ADS  Google Scholar 

  • Benabid, F, Knight, J C, Antonopoulos, G, and Russell, P St J (2002b). Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298(5592):399-402.

    Article  CAS  ADS  Google Scholar 

  • Birks, T A, Knight, J C, and Russell, P St J (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13):961-3.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Broderick, N G R, Monro, T M, Bennett, P J, and Richardson, D J (1999). Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 24(20):1395-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Charra, F, Agronovitch, V M, and Kajzar, F, editors (2003). Organic Nanophotonics. Springer.

    Google Scholar 

  • Cregan, R F, Mangan, B J, Knight, J C, Birks, T A, Russell, P St J, Roberts, P J, and Allan, D C (1999). Single-mode photonic band gap guidance of light in air. Science, 285:1537-9.

    Article  CAS  PubMed  Google Scholar 

  • Dall, R G, Hoogerland, M D, Tierney, D, Baldwin, K G H, and Buckman, S J (2002). Single mode hollow optical fibres for atom guiding. Applied Physics B: Lasers and Optics, 74(1):11-8.

    Article  CAS  ADS  Google Scholar 

  • Daum, W, Krauser, J, Zamzow, P E, and Ziemann, O (2002). POF Polymer Optical Fibers for Data Communication. Springer Verlag, Berlin, Germany, first edition.

    Google Scholar 

  • Dellemann, G, Engeness, T D, Skorobogatiy, M, and Kolodny, Uri (2003). Perfect mirrors extend hollow-core fiber applications. Photonics Spectra, 37:60.

    Google Scholar 

  • Dupuis, A, Guo, N, Gao, Y, Godbout, N, Lacroix, S, Dubois, C., and Skorobogatiy, M. (2007). Porous double-core biodegradable polymer optical fiber. Optics Letters, 32:109.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Emiliyanov, G, Jensen, J B, Bang, O, Hoiby, P E, Pedersen, L H, Kjær, E M, and Lindvold, L (2007). Localized biosensing with Topas microstructured polymer optical fiber. Optics Letters, 32(5):460-462. Erratum: p. 1059.

    Article  PubMed  ADS  Google Scholar 

  • Feng, X, Mairaj, A K, Hewak, D W, and Monro, T M (2005). Nonsilica glasses for holey fibers. Journal Lightwave Technology, 23(6):2046-54.

    Article  CAS  ADS  Google Scholar 

  • Fini, J M (2004). Microstructure fibres for optical sensing in gases and liquids. Measurement Science and Technology, 5:1120-8.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Fink, Y, Winn, J N, Fan, S H, Chen, C P, Michel, J, Joannopoulos, J D, and Thomas, E L (1998). A dielectric omnidirectional reflector. Science, 282 (5394):1679-1682.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hassani, A and Skorobogatiy, M (2006). Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Optics Express, 14:11616.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hecht, J (1999). City of Light: The Story of Fiber Optics. Oxford University Press, UK.

    Google Scholar 

  • Issa, N A, van Eijkelenborg, M A, Fellew, M, Cox, F, Henry, G, and Large, M C J (2004). Fabrication and study of microstructured optical fibers with elliptical holes. Optics Letters, 29(12):1336-8.

    Article  PubMed  ADS  Google Scholar 

  • Jensen, J, Hoiby, J P, Emiliyanov, G, Bang, O, Pedersen, L, and Bjarklev, A (2005). Selective detection of antibodies in microstructured polymer optical fibers. Optics Express, 13(15):5883-9.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kaino, T (1992). Chapter 1. In Hornak, L A, editor, Polymers for lightwave and integrated optics. Marcel Dekker, New York.

    Google Scholar 

  • Kaiser, V P and Astle, H W (1974). Low-loss single-material fibers made from pure fused silica. Bell System Technical Journal, 53:1021-39.

    Google Scholar 

  • Kaiser, V P, Marcatili, E A, and Miller, S E (1973). A new optical fiber. Bell System Technical Journal, 52(2):265-9.

    Google Scholar 

  • Kajzar, F and Swalen, J D, editors (1996). Organic Thin Films for waveguiding Nonlinear Optics. Taylor & Francis, Gordon and Breach. Advances in non-linear optics Vol 3.

    Google Scholar 

  • Kiang, K M, Frampton, K, Monro, T M, Moore, R, Tucknott, J, Hewak, D W, Richardson, D J, and Rutt, H N (2002). Extruded single mode non-silica glass holey optical fibres. Electronics Letters, 38(12):546-7.

    Article  CAS  Google Scholar 

  • Knight, J C, Arriaga, J, Birks, T A, Wadsworth, W J, and Russell, P St J (2000). Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 12(7):807-9.

    Article  ADS  Google Scholar 

  • Knight, J C, Birks, T A, Russell, P St J, and Atkin, D M (1996). All-silica single mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19):1547-9.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Koike, Y (1998). POF from the past to the future. In Proceedings of the International Plastic Optical Fibres conference, volume 7, pages 1-8, Berlin, Germany.

    Google Scholar 

  • Koike, Y and Nihei, E (1991). Low loss graded index and single mode polymer optical fiber. In ACS Polymer Preprints - Photonic Polymer for Device Applications, volume 32, pages 111-112, New York, USA.

    Google Scholar 

  • Kuang, K S C and Cantwell, W J (2003). The use of plastic optical fibre sensors for monitoring the dynamic response of fibre composite beams. Measurement Science and Technology, 14:736-45.

    Article  CAS  ADS  Google Scholar 

  • Kuang, K S C, Cantwell, W J, and Scully, P J (2002). An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements. Measurement Science and Technology, 13:1523-34.

    Article  CAS  ADS  Google Scholar 

  • Kumar, V V Ravi Kanth, George, A K, Knight, J C, and Russell, P St J (2003). Tellurite photonic crystal fiber. Optics Express, 11(20):2641-5.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kumar, V V Ravi Kanth, George, A K, Reeves, W H, Knight, J C, Russell, P St J, Omenetto, F G, and Taylor, A J (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 10 (25):1520-5.

    CAS  PubMed  ADS  Google Scholar 

  • Kuriki, K, Shapira, O, Hart, S, Benoit, G, Kuriki, Y, Viens, J, Bayindir, M, Joannopoulos, J, and Fink, Y (2004). Hollow multilayer photonic bandgap fibers for nir applications. Optics Express, 12(8):1510-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Large, M C J, Ponrathnam, S, Argyros, A, Bassett, I, Punjari, N S, Cox, F, Barton, G W, and van Eijkelenborg, M A (2006). Microstructured polymer optical fibres: New opportunities and challenges. In Burillo, G, Ogawa, T, Rau, I, and Kajzar, F, editors, Molecular Crystals and Liquid Crystals Journal, Special issue, Proceedings of the 8th international conference on frontiers of polymers and advanced materials, volume 446, pages 219-31. Taylor & Francis.

    Google Scholar 

  • Limpert, J, Schreiber, T, Nolte, S, Zellmer, H, Tünnermann, A, Iliew, R, Lederer, F, Broeng, J, Vienne, G, Petersson, A, and Jakobsen, C (2003). High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express, 11(7):818-23.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu, H Y, Liu, H B, and Peng, G D (2006). Polymer optical fibre Bragg gratings based fibre laser. Optics Communications, 266(1):132-5.

    Article  CAS  ADS  Google Scholar 

  • Liu, H Y, Liu, H B, Peng, G D, and Chu, P L (2003). Observation of type I and type II gratings behavior in polymer optical fiber. Optics Communications, 220 (4-6):337-43.

    Article  CAS  ADS  Google Scholar 

  • MacChesney, J B, O’Connor, P B, and Presby, H M (1974). A new technique for preparation of low-loss and graded index optical fibers. Proceedings of the IEEE, 62(9):1280-1.

    Article  Google Scholar 

  • Mach, P, Dolinski, M, Baldwin, K W, Rogers, J A, Kerbage, C, Windeler, R S, and Eggleton, B J (2002). Tunable microfluidic optical fiber. Applied Physics Letters, 80(23):4294-6.

    Article  CAS  ADS  Google Scholar 

  • Marcatili, E A J (1973). Air clad optical fiber waveguide. US Patent 3712705.

    Google Scholar 

  • Monro, T M, West, Y D, Hewak, D W, Broderick, N G R, and Richardson, D J (2000). Chalcogenide holey fibres. Electronics Letters, 36(24):1998-2000.

    Article  Google Scholar 

  • Murofushi, M (1996). Low loss perfluorinated POF. In Proceedings of the International Plastic Optical Fibres conference, pages 17-23, Paris, France.

    Google Scholar 

  • Muto, S, Sato, H, and Hosaka, T (1994). Optical humidity sensor using fluorescent plastic fiber and its application to breathing condition monitor. Japanese Journal of Applied Physics, 33(10):6060-4.

    Article  CAS  ADS  Google Scholar 

  • Myaing, M T, Ye, J Y, Norris, T B, Thomas, T, Jr, J R Baker, Wadsworth, W J, Bouwmans, G, Knight, J C, and Russell, P St J (2003). Enhanced two-photon biosensing with double-clad photonic crystal fiber. Optics Letters, 28 (14):1224-6.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nocivelli, A (2006). Plastic fibre promises ubiquitous optical access. FibreSystems Europe in association with LIGHTWAVE Europe, page 14.

    Google Scholar 

  • O’Keeffe, S, Fitzpatrick, C, and Lewis, E (2005). Ozone measurement in visible region: an optical fibre sensor system. Electronics Letters, 41(24):1317-9.

    Article  CAS  Google Scholar 

  • Ortigosa-Blanch, A, Knight, J C, Wadsworth, W J, Arriaga, J, Mangan, B J, Birks, T A, and Russell, P St J (2000). Highly birefringent photonic crystal fibers. Optics Letters, 25(18):1325-27.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Palais, J C (1992). Fiber Optic Communications. Prentice Hall, Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  • Peng, G D (2002). Prospects of POF and grating for sensing. In Proceedings of the International Conference on Optical Fiber Sensors, volume 1, pages 714-6, Portland, USA.

    Google Scholar 

  • Peng, G D, Liu, H Y, Chu, P L, and Wang, T (2005). Sensor applications of polymer optical Bragg gratings. In Proceedings of the International Conference on Polymer Optical Fiber, volume 14, pages 213-6, Hong Kong, China.

    Google Scholar 

  • Polishuk, P (2006). Plastic optical fibers branch out. IEEE communications Magazine.

    Google Scholar 

  • Ranka, J K, Windeler, R S, and Stentz, A J (2000). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25(1):25-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Reeves, W, Knight, J C, Russell, P St J, and Roberts, P (2002). Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10 (14):609-13.

    PubMed  ADS  Google Scholar 

  • Ritari, T, Tuominen, J, Ludvigsen, H, Petersen, J, Sørensen, T, Hansen, T, and Simonsen, H (2004). Gas sensing using air-guiding photonic bandgap fibers. Optics Express, 12(17):4080-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Roberts, P J, Couny, F, Sabert, H, Mangan, B J, Williams, D P, Farr, L, Mason, M W, Tomlinson, A, Birks, T A, Knight, J C, and Russell, P St J (2005). Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 13(1):236-44.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Russell, P St-J (2006). Photonic-crystal fibers. Journal Of Lightwave Technology, 24(12).

    Google Scholar 

  • Saitoh, K, Koshiba, M, Hasegawa, T, and Sasaoka, E (2003). Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 11(8):843-52.

    Article  PubMed  ADS  Google Scholar 

  • Skorobogatiy, M (2005a). Design principles of multi-fiber resonant directional couplers with hollow Bragg fibers: example of a 3x3 coupler. Optics Letters, 30:2849.

    Article  CAS  ADS  Google Scholar 

  • Skorobogatiy, M (2005b). Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector. Optics Letters, 30:2991.

    Article  CAS  ADS  Google Scholar 

  • Skorobogatiy, M and Dupuis, A (2007). Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Applied Physics Letters, 90:113514.

    Article  ADS  CAS  Google Scholar 

  • Skorobogatiy, M and Guo, N (2007). Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers. Optics Letters, 32:900.

    Article  PubMed  ADS  Google Scholar 

  • Skorobogatiy, M and Kabashin, A V (2006). Photon crystal waveguide-based surface plasmon resonance bio-sensor. Applied Physics Letters, 89.

    Google Scholar 

  • Vali, V and Chang, D B (1992). Low index of refraction optical fiber with tubular core and/or cladding. US Patent 5155792.

    Google Scholar 

  • van Eijkelenborg, M A (2004). Imaging with microstructured polymer fibre. Opics Express, 12(2):342-6.

    Article  ADS  Google Scholar 

  • van Eijkelenborg, M A, Large, M C J, Argyros, A, Zagari, J, Manos, S, Issa, N A, Bassett, I, Fleming, S, McPhedran, R C, de Sterke, C M, and Nicorovici, N A P (2001). Microstructured polymer optical fibre. Optics Express, 9(7):319-27.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Vienne, G, Xu, Y, Jakobsen, C, Deyerl, H-J, Jensen, J, Sørensen, T, Hansen, T, Huang, Y, Terrel, M, Lee, R, Mortensen, N, Broeng, J, Simonsen, H, Bjarklev, A, and Yariv, A (2004). Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports. Optics Express, 12 (15):3500-8.

    Article  PubMed  ADS  Google Scholar 

  • Wadsworth, W J, Percival, R M, Bouwmans, G, Knight, J C, Birks, T A, Hedley, T D, and Russell, P St J (2004). Very high numerical aperture fibers. IEEE Photonics Technology Letters, 16(3):843-5.

    Article  ADS  Google Scholar 

  • Wadsworth, W J, Percival, R M, Bouwmans, G, Knight, J C, and Russell, P St J (2003). High power air-clad photonic crystal fiber laser. Optics Express, 11(1):48-53.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhou, J, Tajima, K, Nakajima, K, Kurokawa, K, Fukai, C, Matsui, T, and Sankawa, I (2005). Progress on low loss photonic crystal fibers. Optical Fiber Technology, 11(2):101-10.

    Article  CAS  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). History and Applications of Polymer Fibres and Microstructured Fibres. In: Microstructured Polymer Optical Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68617-2_1

Download citation

Publish with us

Policies and ethics