Advertisement

Sensing Infrared and Terahertz Regions by Functional Films

  • Magnus Willander
  • Victor Ryzhii
  • Qingxiang Zhao
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Designing functional films and nanostructures has a key role in the performance of the infrared (IR) sensing and terahertz (THz) sensing that are based particularly on quantum well, wire, and dot structures. Sensing the electromagnetic (EM) spectra is an extremely important issue for various fields, from understanding the universe, living cells, and elementary particles to numerous applications. To give a glimpse of the field in connection to functional films and nanostructures as sensing elements, in this chapter we briefly discuss infrared (IR) sensing and terahertz (THz) sensing. For IR sensing we limit ourselves to low-dimensional semiconductor functional films. For THz sensing we discuss: (a) how strain in thin films influences THz absorption from impurities, (b) plasma effects in two-dimensional electron gas (2DEG), and (c) ultrasensitive bolometers based on metal films.

Keywords

Quantum Well Plasma Wave Capture Probability Plasma Oscillation Noise Equivalent Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agulo I, Kuzmin L, (2004) Nanotechnology, 15:224–228Google Scholar
  2. Allen SJ, Tsui DC, Logan RA (1977) Phys. Rev. Lett., 38:980–983Google Scholar
  3. Altukhov IV, Chirikova EG, Kagan MS, Korolev KA, Sinis VP, Smirnov FA (1992) Sov. Phys. JETP, 74:404Google Scholar
  4. Andronov AA (1987) Sov. Phys. Semiconduct., 21:701Google Scholar
  5. Bannov NA, Ryzhii VI (1983) Sov. Phys. Semicond., 17:439–441Google Scholar
  6. Berryman KW, Lyon SA, Segev M (1997) Appl. Phys. Lett., 70:1861–1863Google Scholar
  7. Bhattacharya P, Stiff-Roberts AD, Krishna S, Kennerly S (2002) Proc. SPIE, 4646:100–106Google Scholar
  8. Boucaud P, Brunhes T, Sauvage S, Yam N, Thanh V Le, Boucier D, Rappaport N (2001) Phys. Stat. Sol. (a), 224:233–235Google Scholar
  9. Brazis R (1995) Lithuanian Phys. J., 35:447Google Scholar
  10. Breakthrough of the Year: Illuminating the Dark Universe (2003) Science, 302, 2038.Google Scholar
  11. Chaplik AV (1972) Sov. Phys. JETP, 35:395–398Google Scholar
  12. Cheremisin MV, Samsonidze GG (1999) Semiconductors, 33:578–582Google Scholar
  13. Choi KK (1997) The Physics of Quantum Well Infrared Photodetectors. Singapore: World ScientificGoogle Scholar
  14. Crowne J (1997) J. Appl. Phys., 82:1242–1254Google Scholar
  15. Deng Y, Knap W, Rumyantsev S, Gaska R, Khan A, Ryzhii V, Kaminska E, Piotrowska A, Lusakowski J, Shur MS (2002) 2002 IEEE Lester Eastman Conference on High Performance Devices, University of Delaware, Newark, pp. 135–142Google Scholar
  16. Duboz J-Y, Liu HC, Wasilewski ZR, Byloss M, Dudek R (2003) J. Appl. Phys., 93:1320–1322Google Scholar
  17. Dyakonov M, Shur M (1993) Phys. Rev. Lett., 71:2465–2468Google Scholar
  18. Dyakonov M, Shur M (1996) IEEE Trans. Electron. Dev., 43:380–387, 1640–1645Google Scholar
  19. Einevoll GT, Chang Y-C (1990) Phys. Rev. B, 41,1447Google Scholar
  20. Ekenstedt MJ, Andersson TG, Wang SM (1993) Phys. Rev. B, 48:5289Google Scholar
  21. Ershov M, Ryzhii V, Hamaguchi C (1995) Appl. Phys. Lett., 67:3147–3149Google Scholar
  22. Faist J, Capasso F, Sivco DL, Hutchinson AL, Cho AY (1994) Science, 264:553Google Scholar
  23. Fraizzoli S, Pasquarello A (1990) Phys. Rev. B, 42:5349Google Scholar
  24. Fraizzoli S, Pasquarello A (1991) Phys. Rev. B, 44:1118Google Scholar
  25. Fritz IJ (1987) Appl. Phys. Lett., 51:1080Google Scholar
  26. Govorov AO, Kovalev VM, Chaplik AV (1999) JEPT Lett., 70:488–490Google Scholar
  27. Govorov AO, Studenikin SA, Frank WR (1998) Phys. Rev. B, 58:1517–1532Google Scholar
  28. Grave I, Yariv A (1992) In: Intersubband Transitions in Quantum Wells (Rosencher E, Vinter B, Levine B eds.). New York: Plenum, p. 15Google Scholar
  29. Hanabe M, Otsuji T, Ishibashi T, Uno T, Ryzhii V (2005) Jpn. J. Appl. Phys., 44:3842–3847Google Scholar
  30. Helm M, Hilber W, Fromherz T, Peters FM, Alavi K, Psthar RN (1994). In: Quantum Well Intersubband Transition Physics and Devices (Liu HC, Levine BF, Andersson JY, eds.). Dordrecht: Kluwer, p. 291Google Scholar
  31. Holtz PO, Zhao QX (2005) In: Materials Science V77, Impurities Confined in Quantum Structures (Hull R, Parisi J, Osgood RM, Warlimont H, eds.). Springer.Google Scholar
  32. Horiguchi N, Futatsugi T, Nakata Y, Yokoyama N, Mankad T, Petroff PM (1999) Jpn. J. Appl. Phys., 38:2559–2561Google Scholar
  33. Hu BYK, Wilkins JW (1991) Phys. Rev. B, 43:14009–14029Google Scholar
  34. Kempa K, Bakshi P, Xie H (1993) Phys. Rev. B, 48:9158–9161Google Scholar
  35. Kersting R, Unterrainer K, Strasser G, Kauffmann HF, Gornik E (1997) Phys. Rev. Lett., 79:3038–3041Google Scholar
  36. Khmyrova I, Ryzhii V (2000) Jpn. J. Appl. Phys., 39:4727–4732Google Scholar
  37. Kim S, Mohseni H, Erdtmann M, Michel E, Jelen C, Razeghi M (1998) Appl. Phys. Lett., 73:963–965Google Scholar
  38. Kochman B, Stiff-Roberts D, Chakrabarti S, Phillips JD, Krishna S, Bhattacharya P (2003) IEEE J. Quant. Electron., 39:459–463Google Scholar
  39. Krasheninnikov MV, Chaplik AV (1981) Sov. Phys. Semicond., 15:19–22Google Scholar
  40. Kustov VL, Ryzhii VI, Sigov YUS (1980) Sov. Phys. JETP, 52:1207–1212Google Scholar
  41. Kuzmin L (2000) Proceedings of the 9th Symposium on Space THz Technology, Pasadena, pp. 99–103, March 1998; Phys. B: Condensed Matt., 284–288, 2129.Google Scholar
  42. Kuzmin L (2004) Proceedings of SPIE conference “Mm and Submm Detectors”, Glasgow, June 21–25, Vol. 5498, pp. 349–361.Google Scholar
  43. Kuzmin L, Golubev D (2002) Phys. C, 372–376:378–382Google Scholar
  44. Kuzmin L, Mauskopf P (2005) Superconducting Cold-Electron Bolometer with JFET Readout for Balloon-Borne Telescope OLIMPO, ISSTT-05, Gothenburg, May.Google Scholar
  45. Kuzmin L, Devyatov I, Golubev D (1998) Proceedings of SPIE, 3465:193–199Google Scholar
  46. Kuzmin L, Agulo I, (2004) Supercond. Sci. Technol., 17:400–405Google Scholar
  47. Lee A, Richards P, Nam S, Cabrera B, Irwin K (1996) Appl. Phys. Lett., 69:1801Google Scholar
  48. Lee S-W, Hirakawa K, Shimada Y (1999) Appl. Phys. Lett., 75:1428–1430Google Scholar
  49. Li L-X, Sun S, Chang Y-C (2003) Infrared Phys. Technol., 44:57–61Google Scholar
  50. Liu HC (1992) Appl. Phys. Lett., 60:1507–1509Google Scholar
  51. Liu HC, Gao M, McCaffrey J, Wasilewski ZR, Fafard S (2001) Appl. Phys. Lett., 78:79–81Google Scholar
  52. Liu HC, Gunapala SD, Schneider H (eds.) (2004) QWIP 2004: Proceedings of the International Workshop on Quantum Well Infrared Photodetectors, Elsevier, Amsterdam.Google Scholar
  53. Loehr JP, Chen YC, Biswas D, Bhattacharya PK, Singh J (1990) Proceedings of the 20th International Conference on the Physics of Semiconductors, World Scientific, Singapore, Vol. 2, p. 1404Google Scholar
  54. Lu J-Q, Shur MS (2001) Appl. Phys. Lett., 78:2587–2589Google Scholar
  55. Lu J-Q, Shur MS, Hesler JL, Sun L, Weikle R (1998) IEEE Electron. Dev. Lett., 19:373–374Google Scholar
  56. Luryi S (1985) IEEE Electron. Dev. Lett., 6:78–80Google Scholar
  57. Maimon S, Finkman E, Bahir G, Schacham SE, Garcia JM, Petroff PM (1998) Appl. Phys. Lett., 73:2003–2005Google Scholar
  58. Masi S, de Bernardis P, et al. (2006) In: Background Microwave Radiation and Intracluster Cosmology eds, Melchiorri F and Rephaeli Y (New IOS press publication)Google Scholar
  59. Masselink WT, Change Y-C, Morkoc H (1983) Phys. Rev. B, 28:7373Google Scholar
  60. Masselink WT, Change Y-C, Morkoc H (1985) Phys. Rev. B, 32:5190Google Scholar
  61. Matov OR, Meskov OF, Popov VV (1998) J. Exp. Theor. Phys., 86:538–544Google Scholar
  62. Matthews JW, Blakeslee AE (1974) J. Crystal Growth, 27:118Google Scholar
  63. Miesner C, Brunner K, Abstreiter G (2001) Phys. Stat. Sol. (a), 224:605–607Google Scholar
  64. Nakayama M (1974) J. Phys. Soc. Jpn., 36:393–398Google Scholar
  65. Odnoblyudov MA, Chistyakov VM, Yassievich IN, Kagan MS (1998) Phys. Stat. Sol. (b), 210:873Google Scholar
  66. Odnoblyudov MA, Yassievich IN, Kagan MS, Galperin YUM, Chao KA (1999) Phys. Rev. Lett., 83:644Google Scholar
  67. Pan D, Towe E, Kennerly S (1998) Appl. Phys. Lett., 73:1937–1939Google Scholar
  68. Pan D, Towe E, Kennerly S (1999) Appl. Phys. Lett., 75:2719–2721Google Scholar
  69. Pasquarello A, Andreani LC, Buczko R (1989) Phys. Rev. B, 40:5602Google Scholar
  70. People R, Bean JC (1985) Phys. Appl. Lett., 47:322Google Scholar
  71. Phillips J, Kamath K, Bhattacharya B (1998) Appl. Phys. Lett., 72:2020–2022Google Scholar
  72. Phillips J, Bhattacharya P, Kennerly SW, Beekman DW, Dutta M (1999) IEEE J. Quant. Electron., 35:936–940Google Scholar
  73. Raghavan S, Rotella P, Stinz A, Fuchs B, Krishna S, Morath C, Cardimona DA, Kennerly SW (2002) Appl. Phys. Lett., 81:1369–1371Google Scholar
  74. Rappaport N, Finkman E, Brunhes T, Boucaud P, Sauvage S, Yam N, Thanh V Le, Boucier D (2000) Appl. Phys. Lett., 77:3224–3226Google Scholar
  75. Rokhinson LP, Chen CJ, Tsui DC, Vawter GA, Choi KK (1999) Appl. Phys. Lett., 74:759–761Google Scholar
  76. Rosencher E, Vinter B, Luc F, Thibaudeau L, Bois P, Nagle J (1994) IEEE Trans. Quant. Electron., 30:2875–2882Google Scholar
  77. Rudin S, Samsonidze G (1998) Phys. Rev. B, 58:16369–16373Google Scholar
  78. Rudin S, Samsonidze G, Crowne F (1999) J. Appl. Phys., 86:2083–2088Google Scholar
  79. Ryzhii M, Ryzhii V (1999) Jpn. J. Appl. Phys., 38:5922–5927Google Scholar
  80. Ryzhii M, Ryzhii V, Willander M (1999) Jpn. J. Appl. Phys., 38:6650–6653Google Scholar
  81. Ryzhii V (1996) Semicond. Sci. Technol., 11:759–765Google Scholar
  82. Ryzhii V (1997) Appl. Phys. Lett., 70:2532–2534 and J. Appl. Phys., 81:6442–6448Google Scholar
  83. Ryzhii V (1998) Jpn. J. Appl. Phys., 37:5937–5944Google Scholar
  84. Ryzhii V (2001) Jpn. J. Appl. Phys., 40:L148–L150 and Appl. Phys. Lett., 78:3346–3348Google Scholar
  85. Ryzhii V (ed.) (2003) Intersubband Infrared Photodetectors. Singapore: World Scientific.Google Scholar
  86. Ryzhii V, Ershov M (1995) Semicond. Sci. Technol., 10:687–690Google Scholar
  87. Ryzhii VI, Fedirko VA (1983) Sov. Phys. Semicond. 17:850–851Google Scholar
  88. Ryzhii V, Liu HC (1999) Jpn. J. Appl. Phys., 38:5815–5822Google Scholar
  89. Ryzhii VI, Bannov NA, Fedirko VA (1984) Sov. Phys. Semicond., 18:481–493Google Scholar
  90. Ryzhii V, Khmyrova I, Ryzhii M, Ershov M (1996) J. Phys. IV, 6:C3-157–159Google Scholar
  91. Ryzhii V, Khmyrova I, Shur M (2000a) J. Appl. Phys., 88:2868–2871Google Scholar
  92. Ryzhii V, Khmyrova I, Mitin V, Stroscio M, Willander M (2001a) Appl. Phys. Lett., 78:3523–3525Google Scholar
  93. Ryzhii V, Khmyrova I, Pipa V, Mitin V, Willander M (2001b) Semicond. Sci. Technol., 16:331–338Google Scholar
  94. Ryzhii V, Khmyrova I, Ryzhii M, Mitin V (2004a) Semicond. Sci Technol., 19:8–16Google Scholar
  95. Ryzhii V, Khmyrova I, Ryzhii M, Pipa V, Mitin V, Willander M (2001c ) Proc. SPIE, 4288:396–406Google Scholar
  96. Ryzhii V, Khmyrova I, Shur M (2002a) J. Appl. Phys., 91:1875–1881Google Scholar
  97. Ryzhii V, Pipa V, Khmyrova I, Mitin V, Willander M (2000b) Jpn. J. Appl. Phys., 39:L1283–L1285Google Scholar
  98. Ryzhii V, Ryzhii M, Liu HC (2002b) J. Appl. Phys., 92:207–213Google Scholar
  99. Ryzhii V, Satou A, Shur MS (2003) J. Appl. Phys., 93:10041–10045Google Scholar
  100. Ryzhii V, Satou A, Shur MS (2005) Phys. Stat. Sol. (a), 202:R113–R115Google Scholar
  101. Ryzhii V, Satou V, Khmyrova I, Chaplik A, Shur MS (2004b) J. Appl. Phys., 96:7625Google Scholar
  102. Sa'ar A, Mermelstein C, Schneider H, Schoenbein C, Walther M (1998) IEEE Photon. Technol. Lett., 10:1470–1472Google Scholar
  103. Satou A, Khmyrova I, Ryzhii V, Shur MS (2003) Semicond. Sci. Technol., 18:460–469Google Scholar
  104. Satou A, Ryzhii V, Chaplik A (2005a) J. Appl. Phys., 98:034502 1–5Google Scholar
  105. Satou A, Vyurkov V, Khmyrova I (2004) Jpn. J. Appl. Phys., 43:L566–L568Google Scholar
  106. Satou A, Khmyrova I, Chaplik A, Ryzhii V, Shur MS (2005b) Jpn. J. Appl. Phys., 44:2592–2596Google Scholar
  107. Sergeev A, Mitin V, Stroscio M (2002) Phys. B, 316–317:369–371Google Scholar
  108. Shur MS (1990) Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-HallGoogle Scholar
  109. Shur MS, Ryzhii V (2003) Int. J. High Speed Electron. Syst., 13:575–600Google Scholar
  110. Sirmain G, Reichertz LA, Dubon OD, Haller EE, Hansen WL, Brundermann E, Linhart AM, Roser HP (1997) Appl. Phys. Lett., 70:1659Google Scholar
  111. Stern F (1967) Phys. Rev. Lett., 18:546–548Google Scholar
  112. Tang S-F, Lin S-Y, Lee S-C (2002) IEEE Trans. Electron. Dev., 49:1341–1346Google Scholar
  113. Teppe F, Veksler D, Kacharovskii VYU, Dmitriev AP, Rumyantsev S, Knap W, Shur MS (2005) Appl. Phys. Lett., 87:022102–022104Google Scholar
  114. Towe E, Pan D (2000) IEEE J. Sel. Top. Quant. Electron., 6:408–413Google Scholar
  115. Tsao JY, Dodson BW, Picraux ST, Cornelison DM (1987) Phys. Rev. Lett., 59:2455Google Scholar
  116. Vasanelli A, De Giorgi M, Ferreira R, Cingolani R, Bastard G (2001) Phys. E, 11:41–43Google Scholar
  117. Wang SM, Andersson TG, Vladimir KD, Yao JY (1991) Superlattice Microstruct., 9:123Google Scholar
  118. Xu SJ, Chua SJ, Mei T, Wang XC, Zhang XH, Karunasiri G, Fan WJ, Wang CH, Jiang J, Wang S, Xie XG (1998) Appl. Phys. Lett., 73:3153–3155Google Scholar
  119. Yakimov AI, Dvurechenskii AV, Proskuryakov YYU, Nikiforov AI, Pchelyakov OP, Teys SA, Gutakovskii AK (1999) Appl. Phys. Lett., 75:1413–1415Google Scholar
  120. Ye Z, Campbell JC, Chen Z, Kim E-T, Madhukar A (2002) IEEE J. Quant. Electron., 38:1234–1239Google Scholar
  121. Zhao QX, Willander M (1998) Phys. Rev. B, 57:13033Google Scholar
  122. Zhao QX, Willander M (1999) J. Appl. Phys., 86:5624Google Scholar
  123. Zhao QX, Willander M (2000) Phys. Lett. A, 270:273Google Scholar
  124. Zhao QX, Holtz PO, Pasquarello A, Monemar B, Willander M (1994a) Phys. Rev. B, 50:2393Google Scholar
  125. Zhao QX, Karlsteen M, Willander M, Wang SM, Sadeghi M (2000) Phys. Rev. B, 62:5055Google Scholar
  126. Zhao QX, Pasquarello A, Holtz PO, Monemar B, Willander M (1994b) Phys. Rev. B, 50:10953Google Scholar
  127. Zhao QX, Wongmanerod S, Willander M, Holtz PO, Wang SM, Sadeghi M (2001) Phys. Rev. B, 19:5317Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Magnus Willander
    • 1
  • Victor Ryzhii
    • 2
  • Qingxiang Zhao
    • 3
  1. 1.Linköping UniversityInstitute of Science and TechnologyNorrköpingSweden
  2. 2.Computer Solid State Physics LaboratoryUniversity of AizuAizu-WakamatsuJapan
  3. 3.Linköping UniversityInstitute of Science and TechnologyNorrköpingSweden

Personalised recommendations