Chemical Sensors: New Ideas for the Mature Field

  • Radislav A. PotyrailoEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


Chemical sensors for diverse applications for gas- and liquid-phase sensing have their own design requirements. Thus, sensors typically have long timelines from the concept through the evolution and cost reduction to commercial products. For some applications, it is attractive to take advantage of previously developed, optimized, and mass-produced physical transducers, optoelectronic, radiofrequency identification, and other types of components and to rationally combine them with sensing materials to produce new types of chemical sensors, more rapidly than it is typically achieved. Widely deployed and accepted commodity consumer products present a striking set of attractive capabilities applicable for advanced sensors. This chapter presents several recent examples from our laboratory to demonstrate developments in chemical sensors based on electrical, mechanical, and radiant signal-transduction methodologies.


Chemical Sensor Complex Impedance Principal Component Analysis Model Pickup Coil Sensor Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been inspired by the creative teammates at GE Global Research, Nomadics, and Indiana University, Bloomington, IN who have coauthored original contributions cited here: S. Boyette, M. D. Butts, J. R. Cournoyer, Z. Ding, K. Dovidenko, W. P. Flanagan, S. K. Gamage, S. E. Genovese, L. Hassib, A. M. Leach, J. P. Lemmon, R. J. May, W. G. Morris, E. Olson, J. J. Salvo, O. P. Siclovan, R. E. Shaffer, T. M. Sivavec, A. Vertiatchikh, M. B. Wisnudel, and R. J. Wroczynski (GE), L. Salsman (Nomadics), R. C. Conrad, T. L. Danielson, M. Johnson, and A. W. Szumlas (Indiana University), and H. Ghiradella (SUNY Albany). Special thanks go to G. M. Hieftje (Indiana University), A. D. Ellington (while at Indiana University), T. K. Leib, and A. Linsebigler (GE) for letting the creativity grow and expand.


  1. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog. Polym. Sci. 29:699–766.Google Scholar
  2. Ahuja A, James DL, Narayan R (1999) Dynamic behavior of ultra-thin polymer films deposited on surface acoustical wave devices. Sens. Actuators B 72:234–241.Google Scholar
  3. Akmal N, Usmani AM, editors. (1998) Polymers in Sensors. Theory and Practice. Washington, DC: American Chemical Society.Google Scholar
  4. Archibald B, Brümmer O, Devenney M, Giaquinta DM, Jandeleit B, Weinberg WH, Weskamp T (2002a) Combinatorial aspects of materials science. In: Nicolaou KC, Hanko R, Hartwig W, editors. Handbook of Combinatorial Chemistry. Drugs, Catalysts, Materials. Weinheim: Wiley, chapter 34, pp. 1017–1062.Google Scholar
  5. Archibald B, Brümmer O, Devenney M, Gorer S, Jandeleit B, Uno T, Weinberg WH, Weskamp T (2002b) Combinatorial methods in catalysis. In: Nicolaou KC, Hanko R, Hartwig W, editors. Handbook of Combinatorial Chemistry. Drugs, Catalysts, Materials. Weinheim: Wiley, chapter 32, pp. 885–990.Google Scholar
  6. Artmann R (1999) Electronic identification systems: State of the art and their further development. Comput. Electron. Agri. 24:5–26.Google Scholar
  7. Bachner F (2005) Presented at Organic RFID Conference, San-Diego, CA, Oct. 19–21: Intertech Corp.Google Scholar
  8. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97:3083–3132.Google Scholar
  9. Ballantine DS, Jr., White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic Wave Sensors: Theory, Design, and Physico-chemical Applications. San Diego, CA: Academic Press. 436 p.Google Scholar
  10. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: A Practical Guide. New York: Wiley.Google Scholar
  11. Bender F, Barié N, Romoudis G, Voigt A, Rapp M (2003) Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring. Sens. Actuators B 76:1–7.Google Scholar
  12. Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens. Actuators A 115:79–90.Google Scholar
  13. Benschop J, Rosmalen GV (1991) Confocal compact scanning optical microscope based on compact disc technology. Appl. Opt. 30:1179–1184.Google Scholar
  14. Booksh KS, Kowalski BR (1994) Theory of analytical chemistry. Anal. Chem. 66:782A–791A.Google Scholar
  15. Boussaad S, Tao NJ (2003) Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett. 3:1173–1176.Google Scholar
  16. Bouten PCP, Nisato G, Slikkerveer PJ, Van Tongeren HFJJ, Haskal EI, Van DSP (2002) A method for measuring a permeation rate, a test, and an apparatus for measuring and testing: World Patent Appl. WO 2002079757 A2 20021010.Google Scholar
  17. Capitán-Vallvey LF, de Cienfuegos-Gálvez PA, Fernández Ramos MD, Avidad-Castañeda R (2000) Determination of calcium by a single-use optical sensor. Sens. Actuators B 71:140–146.Google Scholar
  18. Carrano JC, Jeys T, Cousins D, Eversole J, Gillespie J, Healy D, Licata N, Loerop W, O'Keefe M, Samuels A, Schultz J, Walter M, Wong N, Billotte B, Munley M, Reich E, Roos J (2004) Chemical and Biological Sensor Standards Study (CBS3). In: Carrano JC, Zukauskas A, editors. Optically Based Biological and Chemical Sensing for Defence. Bellingham, WA: SPIE – The International Society for Optical Engineering. pp. xi–xiii.Google Scholar
  19. Chang TC, Wang GP, Hong YS, Chen HB (2001) Characterization and degradation of hydrogen-bonded acidic polyamideimides linked by disiloxanes. Polym. Degrad. Stab. 73:301–308.Google Scholar
  20. Chau LK, Porter MD (1990) Optical sensor for calcium: Performance, structure, and reactivity of calcichrome immobilized at an anionic polymer film. Anal. Chem. 62:1964–1971.Google Scholar
  21. Cho EJ, Bright FV (2001) Optical sensor array and integrated light source. Anal. Chem. 73:3289–3293.Google Scholar
  22. Cho EJ, Tao Z, Tehan EC, Bright FV (2002) Multianalyte pin-printed biosensor arrays based on protein-doped xerogels. Anal. Chem. 74:6177–6184.Google Scholar
  23. Christensen CM (1997) The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Boston, MA: Harvard Business School Press.Google Scholar
  24. Christensen CM, Raynor ME (2003) The Innovator's Solution: Creating and Sustaining Successful Growth. Boston, MA: Harvard Business School Press.Google Scholar
  25. Chu C-L, Lin C-H (2005) Development of an optical accelerometer with a DVD pick-up head. Meas. Sci. Technol. 16:2498–2502.Google Scholar
  26. Convertino A, Capobianchi A, Valentini A, Cirillo ENM (2003) A new approach to organic solvent detection: High-reflectivity Bragg reflectors based on a gold nanoparticle/Teflon-like composite material. Adv. Mater. 15:1103–1105.Google Scholar
  27. DeLongchamp DM, Hammond PT (2003) Fast ion conduction in layer-by-layer polymer films. Chem. Mater. 15:1165–1173.Google Scholar
  28. Dutta P, Tipple CA, Lavrik NV, Datskos PG, Hofstetter H, Hofstetter O, Sepaniak MJ (2003) Enantioselective sensors based on antibody-mediated nanomechanics. Anal. Chem. 75:2342–2348.Google Scholar
  29. Dybko A, Wróblewski W, Rozniecka E, Pozniakb K, Maciejewski J, Romaniuk R, Brzózka Z (1998) Assessment of water quality based on multiparameter fiber optic probe. Sens. Actuators B 51:208–213.Google Scholar
  30. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081.Google Scholar
  31. Erickson D, Li D (2004) Integrated microfluidic devices. Anal. Chim. Acta 507:11–26.Google Scholar
  32. Fatibello-Filho O, de Andrade JF, Suleiman AA, Guilbault GG (1989) Piezoelectric crystal monitor for carbon dioxide in fermentation processes. Anal. Chem. 61:746–748.Google Scholar
  33. Feng C-D, Sun S-L, Wang H, Segre CU, Stetter JR (1997) Humidity sensing properties of nation and sol-gel derived SiO2/Nafion composite thin films. Sens. Actuators B 40:217–222.Google Scholar
  34. Filippini D, Alimelli A, Di Natale C, Paolesse R, D'Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew. Chem. Int. Ed. 45:3800–3803.Google Scholar
  35. Finkenzeller K (2003) RFID Handbook. Fundamentals and Applications in Contactless Smart Cards and Identification. Hoboken, NJ: Wiley.Google Scholar
  36. Finklea HO, Phillippi MA, Lompert E, Grate JW (1998) Highly sorbent films derived from Ni(SCN)2(4-picoline)4 for the detection of chlorinated and aromatic hydrocarbons with quartz crystal microbalance sensors. Anal. Chem. 70:1268–1276.Google Scholar
  37. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2:36–50.Google Scholar
  38. Frantzen A, Scheidtmann J, Frenzer G, Maier WF, Jockel J, Brinz T, Sanders D, Simon U (2004) High-throughput method for the impedance spectroscopic characterization of resistive gas sensors. Angew. Chem. Int. Ed. 43:752–754.Google Scholar
  39. Furuki M, Pu LS (1992) Hybrid gas detector of squarylium dye Langmuir-Blodgett film deposited on a quartz oscillator. Thin Solid Films 210/211:471–473.Google Scholar
  40. Gomes MTSR, Rocha TA, Duarte AC, Oliveira JABP (1996) The performance of a tetramethylammonium fluoride tetrahydrate coated piezoelectric crystal for carbon dioxide detection. Anal. Chim. Acta 335:235–238.Google Scholar
  41. Göpel W (1996) Ultimate limits in the miniaturization of chemical sensors. Sens. Actuators A 56:83–102.Google Scholar
  42. Gordon JF (1999) Apparatus and method for carrying out analysis of samples: US Patent 5,892,577.Google Scholar
  43. Grate JW (2000) Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100:2627–2648.Google Scholar
  44. Grate JW, Rose-Pehrsson SL, Venezky DL, Klusty M, Wohltjen H (1993) Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition. Anal. Chem. 65:1868–1881.Google Scholar
  45. Groves WAGrate JW, Abraham H, McGill RA (1997a) Sorbent polymer materials for chemical sensors and arrays. In: Kress-Rogers E, editor. Handbook of Biosensors and Electronic Noses. Medicine, Food, and the Environment. Boca Raton, FL: CRC. pp. 593–612.Google Scholar
  46. Grate JW, Kaganove SN, Bhethanabotla VR (1997b) Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients. Faraday Discuss. 107:259–283.Google Scholar
  47. Grate JW, Kaganove SN, Bhethanabotla VR (1998) Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors. Anal. Chem. 70:199–203.Google Scholar
  48. Groves WA, Zellers ET, Frye GC (1998) Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: Selection and characterization of the preconcentrator adsorbent. Anal. Chim. Acta 371:131–143.Google Scholar
  49. Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) CMOS Single Chip Gas Detection Systems – Part I. In: Baltes H, Göpel W, Hesse J, editors. Sensors Update, Vol. 11. Weinheim: VCH. pp. 101–155.Google Scholar
  50. Hagleitner C, Hierlemann A, Brand O, Baltes H (2003) CMOS Single Chip Gas Detection Systems – Part II. In: Baltes H, Göpel W, Hesse J, editors. Sensors Update, Vol. 12. Weinheim: VCH. pp. 51–120.Google Scholar
  51. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296.Google Scholar
  52. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA 99:16531–16536.Google Scholar
  53. Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73:1567–1571.Google Scholar
  54. Harsanyi G (1995) Polymer Films in Sensor Applications. Lancaster, PA: Technomic.Google Scholar
  55. Hassibi A, Lee TH, Navid R, Dutton RW, Zahedi S (2004) Effects of scaling on the SNR and speed of biosensors. Conf. Proc. 26th Ann. Intl Conf. IEEE. Engineering in Medicine and Biology Society EMBS. pp. 2549–2552.Google Scholar
  56. Hierlemann A, Baltes H (2003) CMOS-based chemical microsensors. Analyst 128:15–28.Google Scholar
  57. Hirayama E, Sugiyama T, Hisamoto H, Suzuki K (2000) Visual and colorimetric lithium ion sensing based on digital color analysis. Anal. Chem. 72:465–474.Google Scholar
  58. Hirschfeld T (1985) Instrumentation in the next decade. Science 230:286–291.Google Scholar
  59. Hirschfeld T, Callis JB, Kowalski BR (1984) Chemical sensing in process analysis. Science 226:312–318.Google Scholar
  60. Hofmann MC, Kensy F, Buechs J, Mokwa W, Schnakenberg U (2005) Transponder-based sensor for monitoring electrical properties of biological cell solutions. J. Biosci. Bioeng. 100:172–177.Google Scholar
  61. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832.Google Scholar
  62. Hoyt AE, Ricco AJ, Bartholomew JW, Osbourn GC (1998) SAW sensors for the room-temperature measurement of CO2 and relative humidity. Anal. Chem. 70:2137–2145.Google Scholar
  63. Hruschka WR, Massie DR, Anderson JD (1983) Computerized analysis of two-dimensional electrophoretograms. Anal. Chem. 55:2345–2348.Google Scholar
  64. Hsieh M-D, Zellers ET (2004) Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal. Chem. 76:1885–1895.Google Scholar
  65. Hughes RC, Yelton WG, Pfeifer KB, Patel SV (2001) Characteristics and mechanisms in ion-conducting polymer films as chemical sensors. Polyethyleneoxide J. Electrochem. Soc. 148(4):H37–H44.Google Scholar
  66. Ivanisevic A, Yeh J-Y, Mawst L, Kuech TF, Ellis AB (2001) Light-emitting diodes as chemical sensors. Nature 409:476.Google Scholar
  67. Janata J (1989) Principles of Chemical Sensors. New York: Plenum.Google Scholar
  68. Janata J, Josowicz M (2002) Conducting polymers in electronic chemical sensors. Nat. Mater. 2:19–24.Google Scholar
  69. Jandeleit B, Schaefer DJ, Powers TS, Turner HW, Weinberg WH (1999) Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 38:2494–2532.Google Scholar
  70. Jarrett MR, Finklea HO (1999) Detection of nonpolar vapors on quartz crystal microbalances with Ni(SCN)2(4-picoline)4 coatings. Anal. Chem. 71:353–357.Google Scholar
  71. Jiang P, Smith DWJ, Ballato JM, Foujger SH (2005) Multicolor pattern generation in photonic bandgap composites. Adv. Mater. 17:179–184.Google Scholar
  72. Jones CL (2005) Cryptographic hash functions and CD-based optical biosensors. Prob. Nonlinear Anal. Eng. Syst. 2(23):17–36.Google Scholar
  73. Jones CL, Thigpen SA (2005) Microbial cell driven website design using genetic algorithms and optical disc computing. Australian Society for Microbiology 2005 National Conference. 25–29 September, 2005. National Convention Centre, Canberra, Australia.Google Scholar
  74. Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100:2649–2678.Google Scholar
  75. Kindlund A, Sundgren H, Lundstrom I (1984) Quartz crystal gas monitor with gas concentrating stage. Sens. Actuators 6:1–17.Google Scholar
  76. King WH, Jr. (1964) Piezoelectric sorption detector. Anal. Chem. 36:1735–1739.Google Scholar
  77. Koinuma H, Takeuchi I (2004) Combinatorial solid state chemistry of inorganic materials. Nat. Mater. 3:429–438.Google Scholar
  78. Korsah K, Ma CL, Dress B (1998) Harmonic frequency analysis of SAW resonator chemical sensors: Application to the detection of carbon dioxide and humidity. Sens. Actuators B 50:110–116.Google Scholar
  79. Kovalevskij V, Gulbinas V, Piskarskas A, Hines MA, Scholes GD (2004) Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics. Phys. Stat. Sol. B 241(8):1986–1993.Google Scholar
  80. Kuban P, Berg JM, Dasgupta PK (2004) Durable microfabricated high-speed humidity sensors. Anal. Chem. 76:2561–2567.Google Scholar
  81. La Clair JJ, Burkart MD (2003) Molecular screening on a compact disc. Org. Biomol. Chem. 1:3244–3249.Google Scholar
  82. Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grässle J, Kopta S, Kolleck M, Breitinger B, Wick M, Hörber JKH, Dübel S, Bernard A (2006) Measuring biomolecular binding events with a compact disc player device. Angew. Chem. Int. Ed. 45:270–273.Google Scholar
  83. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75:2229–2253.Google Scholar
  84. Lawrence D (2005) Presented at Organic RFID Conference, San-Diego, CA, Oct. 19–21: TechVention.Google Scholar
  85. Leatherdale CA, Bawendi MG (2001) Observation of solvatochromism in CdSe colloidal quantum dots. Phys. Rev. B 63:165315 1–6.Google Scholar
  86. Mackay RS, Jaconson B (1957) Endoradiosonde. Nature 179:1239–1240.Google Scholar
  87. Madaras MB, Buck RP (1996) Miniaturized biosensors employing electropolymerized permselective films and their use for creatinine assays in human serum. Anal. Chem. 68:3832–3839.Google Scholar
  88. Madou MJ (2002) Fundamentals of Microfabrication. The Science of Miniaturization. Boca Raton, FL: CRC.Google Scholar
  89. Madou MJ, Cubicciotti R (2003) Scaling issues in chemical and biological sensors. Proc. IEEE 91:830–838.Google Scholar
  90. Maier W, Kirsten G, Orschel M, Weiß P-A, Holzwarth A, Klein J (2002) Combinatorial chemistry of materials, polymers, and catalysts. In: Malhotra R, editor. Combinatorial Approaches to Materials Development. Washington, DC: American Chemical Society. pp. 1–21.Google Scholar
  91. Manzano J, Filippini D, Lundström I (2003) Computer screen illumination for the characterization of colorimetric assays. Sens. Actuators B 96:173–179.Google Scholar
  92. Mascaro DJ, Baxter JC, Halvorsen A, White K, Scholz B, Schulz DL (2007) ChemiBlock transducers. Sens. Actuators B 120:353–361.Google Scholar
  93. McCurley MF, Seitz WR (1991) Fiber-optic sensor for salt concentration based on polymer swelling coupled to optical displacement. Anal. Chim. Acta 249:373–380.Google Scholar
  94. McGrath JE, Dunson DL, Mecham SJ, Hedrick JL (1999) Synthesis and characterization of segmented polyimide-polyorganosiloxane copolymers. Adv. Polym. Sci. 140:61–105.Google Scholar
  95. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem. Rev. 100: 2537–2574.Google Scholar
  96. Meyerhoff ME (1993) In vivo blood-gas and electrolyte sensors: Progress and challenges. Trends Anal. Chem. 12:257–266.Google Scholar
  97. Middelhoek S, Noorlag JW (1981/1982) Three-dimensional representation of input and output transducers. Sens. Actuators 2:29–41.Google Scholar
  98. Mitchell GL (Future Focus Inc., Woodinville, WA, USA) Source: Proceedings of the SPIE - The International Society for Optical Engineering, v 2574, 1995, p 132–40Google Scholar
  99. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769.Google Scholar
  100. Morris DR, Sun X (1993) Water-sorption and transport properties of Nafion 117H. J. Appl. Polym. Sci. 50:1445–1452.Google Scholar
  101. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715.Google Scholar
  102. Nambi S, Nyalamadugu S, Wentworth SM, Chin BA (2003) Radio frequency identification sensors. Proceedings of the 7th World Multiconference on Systemics, Cybernetics & Informatics Orlando, Florida, USA, pp.386–390.Google Scholar
  103. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74:504–509.Google Scholar
  104. Nicolaou KC, Xiao X-Y, Parandoosh Z, Senyei A, Nova MP (1995) Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Ed. 34:2289–2291.Google Scholar
  105. Ong KG, Wang J, Singh RS, Bachas LG, Grimes CA (2001) Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: Application to environmental sensing. Biosens. Bioelectron. 16:305–312.Google Scholar
  106. Opekar F, štulik K (1999) Electrochemical sensors with solid polymer electrolytes. Anal. Chim. Acta 385:151–162.Google Scholar
  107. Oprea A, Henkel K, Oehmgen R, Appel G, Schmeißer D, Lauer H, Hausmann P (1999) Increased sensor sensitivities obtained by polymer-coated quartz microbalances. Mat. Sci. Eng. C 8–9:509–512.Google Scholar
  108. Park J, Groves WA, Zellers ET (1999) Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis. Anal. Chem. 71:3877–3886.Google Scholar
  109. Patrash SJ, Zellers ET (1993) Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors. Anal. Chem. 65:2055–2066.Google Scholar
  110. Peterson DS (2005) Solid supports for micro analytical systems. Lab Chip 5:132–139.Google Scholar
  111. Pickup JC, Alcock S (1991) Clinicians' requirements for chemical sensors for in vivo monitoring: A multinational survey. Biosens. Bioelectron. 6:639–646.Google Scholar
  112. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Dip-pen nanolithography. Science 283:661–663.Google Scholar
  113. Potyrailo RA (2001) On-line measurement. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, editors. Encyclopedia of Materials: Science and Technology. Amsterdam, The Netherlands: Elsevier. pp. 6401–6411.Google Scholar
  114. Potyrailo RA (2002) Coating materials for sensors and monitoring systems, methods for detecting using sensors and monitoring systems: US Patent 6,500,547 B1.Google Scholar
  115. Potyrailo RA (2003) Devices and methods for simultaneous measurement of transmission of vapors through a plurality of sheet materials: US Patent 6,567,753 B2.Google Scholar
  116. Potyrailo RA (2006) Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Ed. 45:702–723.Google Scholar
  117. Potyrailo RA, Amis EJ, editors. (2003) High Throughput Analysis: A Tool for Combinatorial Materials Science. New York: Kluwer/Plenum.Google Scholar
  118. Potyrailo RA, Hassib L (2005) Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays. Rev. Sci. Instrum. 76:062225.Google Scholar
  119. Potyrailo RA, Lemmon JP (2005) Time-modulated combinatorially developed optical sensors for determination of non-volatile analytes in complex samples. QSAR Comb. Sci. 24:7–17.Google Scholar
  120. Potyrailo RA, May RJ (2002) Dynamic high throughput screening of chemical libraries using acoustic-wave sensor system. Rev. Sci. Instrum. 73:1277–1283.Google Scholar
  121. Potyrailo RA, Morris WG (2006a) Implementation of commercially available passive RFID tags for quantitative detection of chemical warfare agent simulants. 2006 International Symposium on Spectral Science Research, May 29–June 02, 2006, Bar Harbor, ME. Organized by the U.S. Army Edgewood Chemical and Biological Center. pp. 264–265.Google Scholar
  122. Potyrailo RA, Morris WG (2006b) Passive RFID tags as chemical sensors. Abstracts of Papers, American Chemical Society 232nd National Meeting & Exposition, September 10–14, 2006, San Francisco, CA. p ANYL-300.Google Scholar
  123. Potyrailo RA, Morris WG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal. Chem. 79:45–51.Google Scholar
  124. Potyrailo RA, Sivavec TM (2004) Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. Anal. Chem. 76:7023–7027.Google Scholar
  125. Potyrailo RA, Sivavec TM (2005) Dual-response resonant chemical sensors for multianalyte analysis. Sens. Actuators B 106:249–252.Google Scholar
  126. Potyrailo RA, Takeuchi I, editors. (2005) Special feature on combinatorial and high-throughput materials research. Meas. Sci. Technol. 316: 1–4Google Scholar
  127. Potyrailo RA, Chisholm BJ, Olson DR, Brennan MJ, Molaison CA (2002) Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries. Anal. Chem. 74:5105–5111.Google Scholar
  128. Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM (1998a) Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70:3419–3425.Google Scholar
  129. Potyrailo RA, Ding Z, Butts MD, Genovese SE (2008) Selective chemical sensing using structurally colored core-shell colloidal crystal films. 8:815–22.Google Scholar
  130. Potyrailo RA, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer JR, Olson E (2007b) Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photon. 1:123–128 (Cover Story).Google Scholar
  131. Potyrailo RA, Hobbs SE, Hieftje GM (1998b) Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and future development trends. Fresenius' J. Anal. Chem. 362:349–373.Google Scholar
  132. Potyrailo RA, Karim A, Wang Q, Chikyow T, editors. (2004a) Combinatorial and Artificial Intelligence Methods in Materials Science II. Warrendale, PA: Materials Research Society.Google Scholar
  133. Potyrailo RA, Leach AM, Morris WG, Gamage SK (2006a) Chemical sensors based on micromachined transducers with integrated piezoresistive readout. Anal. Chem. 78:5633–5638.Google Scholar
  134. Potyrailo RA, May RJ, Sivavec TM (2004b) Recognition and quantification of perchloroethylene, trichloroethylene, vinyl chloride, and three isomers of dichloroethylene using acoustic-wave sensor array. Sens. Lett. 2:31–36.Google Scholar
  135. Potyrailo RA, Morris WG, Boyette SM (2005a) Sensor systems and methods for remote quantification of compounds. US Patent 20050111001.Google Scholar
  136. Potyrailo RA, Morris WG, Boyette SM, Wisnudel MB, Leach AM, Stanley ML (2005b) Sensor systems and methods for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids. US Patent 20050111000.Google Scholar
  137. Potyrailo RA, Morris WG, Leach AM (2005c) Sensor system and methods for improved quantitation of environmental parameters. US Patent 20050111328.Google Scholar
  138. Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Boyette S (2006b) Analog signal acquisition from computer optical drives for quantitative chemical sensing. Anal. Chem. 78:5893–5899.Google Scholar
  139. Potyrailo RA, Morris WG, Leach AM, Wisnudel MB, Boyette S (2006c) Lab-on-DVD: Concept and feasibility demonstration for water analysis. 2006 International Symposium on Spectral Science Research, May 29–June 02, 2006, Bar Harbor, ME. Organized by the U.S. Army Edgewood Chemical and Biological Center. pp. 221–222.Google Scholar
  140. Potyrailo RA, Morris WG, Wroczynski RJ (2003) Acoustic-wave sensors for high-throughput screening of materials. In: Potyrailo RA, Amis EJ, editors. High Throughput Analysis: A Tool for Combinatorial Materials Science. New York: Kluwer/Plenum. Chapter 11.Google Scholar
  141. Potyrailo RA, Morris WG, Wroczynski RJ (2004c) Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorially developed materials. Rev. Sci. Instrum. 75:2177–2186.Google Scholar
  142. Potyrailo RA, Szumlas AW, Danielson TL, Johnson M, Hieftje GM (2005d) A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre. Meas. Sci. Technol. 16:235–241.Google Scholar
  143. Potyrailo RA, Wroczynski RJ, Lemmon JP, Flanagan WP, Siclovan OP (2004d) Multivariate tools for real-time monitoring and optimization of combinatorial materials and process conditions. In: Yan B, editor. Analysis and Purification Methods in Combinatorial Chemistry. Hoboken, NJ: Wiley. pp. 87–123.Google Scholar
  144. Quercioli F, Tiribilli B, Ascoli C, Baschieri P, Frediani C (1999) Monitoring of an atomic force microscope cantilever with a compact disk pickup. Rev. Sci. Instrum. 70:3620–3624.Google Scholar
  145. Rabani E, Hetényi B, Berne BJ, Brus LE (1999) Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. J. Chem. Phys. 110:5355–5369.Google Scholar
  146. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713.Google Scholar
  147. Ren M, Forzani ES, Tao N (2005) Chemical sensor based on microfabricated wristwatch tuning forks. Anal. Chem. 77:2700–2707.Google Scholar
  148. Rosler S, Lucklum R, Borngraber R, Hartmann J, Hauptmann P (1998) Sensor system for the detection of organic pollutants in water by thickness shear mode resonators. Sens. Actuators B 48:415–424.Google Scholar
  149. Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal. Chem. 76:3194–3198.Google Scholar
  150. Scheidtmann J, Frantzen A, Frenzer G, Maier WF (2005) A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Technol. 16:119–127.Google Scholar
  151. Seitz WR (1988) Chemical sensors based on immobilized indicators and fiber optics. CRC Crit. Rev. Anal. Chem. 19(2):135–173.Google Scholar
  152. Sepaniak MJ, Datskos PG, Lavrik NV, Tipple C (2002) Microcantilever transducers: A new approach in sensor technology. Anal. Chem. 74:568A–575A.Google Scholar
  153. Shaffer RE, Potyrailo RA, Salvo JJ, Sivavec TM, Salsman L (2003) GE/Nomadics in-well monitoring system for vertical profiling of DNAPL contaminants. Final Technical Report of Work Performed Under Contract DE-AC26-01NT41188, OSTI ID: 834346, US Department of Energy Information Bridge.
  154. Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano Lett. 5:803–807.Google Scholar
  155. Sherman RE, editor. (1996) Analytical Instrumentation: Practical Guides for Measurement and Control. Research Triangle Park, NC: Instrument Society of America.Google Scholar
  156. Singh K, Shahi VK (1998) Electrochemical studies on nation membrane. J. Memb. Sci. 140:51–56.Google Scholar
  157. Sivavec TM, Potyrailo RA (2002) Polymer coatings for chemical sensors. US Patent 6,357,278 B1.Google Scholar
  158. Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J. Power Sources 124:59–64.Google Scholar
  159. Steinberg TH, Jones LJ, Haugland RP, Singer VL (1996) SYPRO orange and SYPRO red protein gel stains: One-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal. Biochem. 239:223–237.Google Scholar
  160. Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82:3562–3564.Google Scholar
  161. Su P-G, Sun Y-L, Lin C-C (2006) A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sens. Actuators B 115:338–343.Google Scholar
  162. Suzuki H (2000) Advances in the microfabrication of electrochemical sensors and systems. Electroanalysis 12:703–715.Google Scholar
  163. Suzuki K, Hirayama E, Sugiyama T, Yasuda K, Okabe H, Citterio D (2002) Ionophore-based lithium ion film optode realizing multiple color variations utilizing digital color analysis. Anal. Chem. 74:5766–5773.Google Scholar
  164. Tailoka F, Fray DJ, Kumar RV (2003) Application of Nafion electrolytes for the detection of humidity in a corrosive atmosphere. Solid State Ionics 161:267–277.Google Scholar
  165. Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal. Chem. 76:6693–6697.Google Scholar
  166. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760.Google Scholar
  167. Taylor RF, Schultz JS, editors. (1996) Handbook of Chemical and Biological Sensors. Bristol: IOP.Google Scholar
  168. Thompson M, Stone DC (1997) Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization. New York: Wiley. 196 p.Google Scholar
  169. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584.Google Scholar
  170. Tricoli V, Nannetti F (2003) Zeolite-Nafion composites as ion conducting membrane materials. Electrochim. Acta 48:2625–2633.Google Scholar
  171. Vikalo H, Hassibi B, Hassibi A (2006) A statistical model for microarrays, optimal estimation algorithms, and limits of performance. IEEE Trans. Signal Proc. 54:2444–2455.Google Scholar
  172. Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal. Chem. 76:3373–3386.Google Scholar
  173. Vo-Dinh T, Alarie JP, Isola N, Landis D, Wintenberg AL, Ericson MN (1999) DNA biochip using a phototransistor integrated circuit. Anal. Chem. 71:358–363.Google Scholar
  174. Wang H, Feng C-D, Sun S-L, Segre CU, Stetter JR (1997) Comparison of conductometric humidity-sensing polymers. Sens. Actuators B 40:211–216.Google Scholar
  175. Wang J (2002) Electrochemical detection for microscale analytical systems: A review. Talanta 56:223–231.Google Scholar
  176. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125:2408–2409.Google Scholar
  177. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry – Recent development and future perspective. Comput. Electron. Agri. 50:1–14.Google Scholar
  178. Want R. (2004) Enabling ubiquitous sensing with RFID. Computer 37(4):84–86.Google Scholar
  179. Ward M, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007.Google Scholar
  180. Webster JG, editor. (1999) The Measurement, Instrumentation, and Sensors Handbook. Boca Raton, FL: CRC.Google Scholar
  181. Wetzl BK, Yarmoluk SM, Craig DB, Wolfbeis OS (2004) Chameleon labels for staining and quantifying proteins. Angew. Chem. Int. Ed. 43:5400–5402.Google Scholar
  182. Wohltjen H (2006) A journey: From sensor ideas to sensor products. Plenary talk at the 11th International Meeting on Chemical Sensors, University of Brescia, Italy, July 16–19, 2006: Elsevier Science.Google Scholar
  183. Wolfbeis OS, editor. (1991) Fiber Optic Chemical Sensors and Biosensors. Boca Raton, FL: CRC.Google Scholar
  184. Wolfbeis OS (2004) Fiber-optic chemical sensors and biosensors. Anal. Chem. 76:3269–3284.Google Scholar
  185. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal. Chem. 78:3859–3874.Google Scholar
  186. Wu R-J, Sun Y-L, Lin C-C, Chen H-W, Chavali M (2006) Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens. Actuators B 115:198–204.Google Scholar
  187. Yeo SC, Eisenberg A (1977) Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymers. J. Appl. Polym. Sci. 21:875–898.Google Scholar
  188. Zahedi S, Navid R, Hassibi A (2004) Statistical modeling of biochemical detection systems. Proceedings of the 26th Annual International Conference of IEEE Engineering in Medicine and Biology Society, EMBS; San Francisco, CA, USA, pp. 208–211.Google Scholar
  189. Zemel JN (1990) Microfabricated nonoptical chemical sensors. Rev. Sci. Instrum. 61:1579–1606.Google Scholar
  190. Zen J-M, Kumar AS (2001) A mimicking enzyme analogue for chemical sensors. Acc. Chem. Res. 34:772–780.Google Scholar
  191. Zhang C, Suslick KS (2005) Colorimetric sensor array for organics in water. J. Am. Chem. Soc. 127:11548–11549.Google Scholar
  192. Zhang Y, Ji H-F, Brown GM, Thundat T (2003) Detection of CrO4 2− using a hydrogel swelling microcantilever sensor. Anal. Chem. 75:4773–4777.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.GE Global Research CenterNiskayuna

Personalised recommendations