Advertisement

Integrated Micromachining Technologies for Transducer Fabrication

  • Wei-Cheng Tian
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

In order to design a microfabricated transducer, the full understanding of various micromachining technologies is essential. The manufacturability of transducer structures has to be considered and the sensing material application has to be compatible with the transducer fabrication. Various technologies, such as lithography, pattern transfer, and platform material choices are discussed first followed by reviews of different sensing platforms and sensitive material integration techniques. This chapter presents a summary of start-of-the-art micromachining technologies for transducers.

Keywords

Injection Molding Etch Rate Plasma Etching Pattern Transfer Optical Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed H (1986) Advances in high resolution and high throughput in electron beam lithography. Vacuum , 37 : 375. CrossRefGoogle Scholar
  2. Baek IB et al. (2005) Electron beam lithography patterning of sub-10 nm line using hydrogen silsesquioxane for nanoscale device applications. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 23 : 3120 – 3123. CrossRefGoogle Scholar
  3. Bangar M et al. (2005) Individually addressable conducting polymer nanowires for FET based label-free sensing, 208th Meeting of The Electrochemical Society – Meeting Abstracts , 200502 : 2510. Google Scholar
  4. Becker H , Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis , 21 (1) : 12 – 26. CrossRefGoogle Scholar
  5. Braun T et al. (2006) Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophysical Journal , 90 : 2970 – 2977. CrossRefGoogle Scholar
  6. Chan TYM et al. (2005) Photonic band gap templating using optical interference lithography. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics , 71 : 046605. CrossRefGoogle Scholar
  7. Chong HA , Choi J-W , Beaucage G , Nevin JH , Lee J-B , Puntambekar A , Le JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. IEEE Proceedings , 92 : 154 – 173. CrossRefGoogle Scholar
  8. Chou SY (2001) Nanoimprint lithography and lithographically induced self-assembly. MRS Bulletin , 26 : 512. CrossRefGoogle Scholar
  9. Classen A et al. (1992) High voltage electron beam lithography of the resolution limits of SAL 601 negative resist. Microelectronic Engineering , 17 : 21 – 24. CrossRefGoogle Scholar
  10. Cleaver JRA , Ahmed H (1984) Combined electron and ion beam lithography system. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena , 3 : 144 – 147. CrossRefGoogle Scholar
  11. Collins L , Edwards C (2006) Tricks of the light. IEE Electronics Systems and Software , 4 : 42 – 45. Google Scholar
  12. Corman T et al. (1998) Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask. Journal of Micromechanics and Microengineering , 8 : 8 – 87. CrossRefGoogle Scholar
  13. Cui T et al. (2004) Lithographic approach to pattern multiple nanoparticle thin films prepared by layer-by-layer self-assembly for microsystems. Sensors and Actuators, A: Physical , 114 : 501 – 504. CrossRefGoogle Scholar
  14. Dario G et al. (2005) First microprocessors printed with immersion lithography. Microlithography World , 14 : 4, 6, 18. Google Scholar
  15. Dhaliwal RS et al. (2001) PREVAIL – Electron projection technology approach for next-generation lithography. IBM Journal of Research and Development , 45 : 615 – 636. CrossRefGoogle Scholar
  16. Di Fabrizio E et al. (2004) X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications. Journal of Physics Condensed Matter , 16 : S3517 – S3535. CrossRefGoogle Scholar
  17. Doering H-J et al. (2005) Proof-of-concept tool development for projection mask-less lithography (PML2). Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Emerging Lithographic Technologies IX , 5751 : 355 – 365. Google Scholar
  18. Eguchi H et al. (2005) Image placement of large window-size membrane for EPL and LEEPL mask. Proceedings of SPIE – The International Society for Optical Engineering, Photomask and Next-Generation Lithography Mask Technology XII , 5853 : 910 – 920. Google Scholar
  19. Ehrfeld W et al. (1988) LIGA process: Sensor construction techniques via x-ray lithography. Technical Digest, IEEE Solid State Sensor and Actuator Workshop, 1–4. Google Scholar
  20. Fan L et al. (2005) The development of functional endohedral metallofullerene materials. Fullerenes Nanotubes and Carbon Nanostructures , 13 : 155 – 158. CrossRefGoogle Scholar
  21. Fan ZY , Lu JG (2005) Gate-refreshable nanowire chemical sensors. Applied Physics Letters , 86 : 123510. CrossRefGoogle Scholar
  22. Gallatin GM , Houle FA , Cobb JL (2003) Statistical limitations of printing 50 and 80 nm contact holes by EUV lithography. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 21 : 3172 – 3176. CrossRefGoogle Scholar
  23. Gamo K , Namba S (1984) Ion beam lithography. Ultramicroscopy , 15 : 261 – 269. CrossRefGoogle Scholar
  24. Gerlach AK , Guber G , Heckele AE , Herrmann M , Muslija A , Schaller T (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsystem Technologies , 7 : 265 – 268. CrossRefGoogle Scholar
  25. Goulet PJG et al. (2005) Surface-enhanced Raman scattering on dendrimer/metallic nanoparticle layer-by-layer film substrates. Langmuir , 21 : 5576 – 5581. CrossRefGoogle Scholar
  26. Guckel H (1998) High-aspect-ratio micromachining via deep x-ray lithography. Proceedings of the IEEE , 86 : 1586 – 1593. CrossRefGoogle Scholar
  27. Gutierrez-Rivera LE et al. (2006) Nanosieves fabricated by interference lithography and electroforming. Proceedings of SPIE – The International Society for Optical Engineering, Device and Process Technologies for Microelectronics, MEMS, and Photonics IV , 6037 : 603710. Google Scholar
  28. Haefliger D, Boisen A (2005) Contact printed masks for 3D microfabrication in negative resists. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2005 Miami – Technical Digest, 556–559. Google Scholar
  29. Hammond PT (2004) Form and function in multilayer assembly: New applications at the nanoscale. Advanced Materials , 16 : 1271 – 1293. CrossRefGoogle Scholar
  30. Han Li et al. (2005) Nanoparticle-structured sensing array materials and pattern recognition for VOC detection. Sensors and Actuators, B: Chemical , 106 : 431 – 441. CrossRefGoogle Scholar
  31. Hernandez S et al. (2005) Electrodeposition of FePd alloy thin films and nanowires. 208th Meeting of the Electrochemical Society – Meeting Abstracts , MA 2005-02 : 1221. Google Scholar
  32. Holger B , Ulf H (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators , 83 : 130 – 135. CrossRefGoogle Scholar
  33. Ippolito SJ (2005) Highly sensitive layered ZnO/LiNbO 3 SAW device with InO x selective layer for NO 2 and H 2 gas sensing. Sensors and Actuators, B: Chemical , 111–112 : 207 – 212. CrossRefGoogle Scholar
  34. Jayatissa AH , Gupta T (2005) Fine-grain nanocrystalline tungsten oxide films for gas sensor applications. Ceramic Transactions, Ceramic Nanomaterials and Nanotechnology III – Proceedings of the 106th Annual Meeting of the American Ceramic Society , 159 : 119 – 124. Google Scholar
  35. Jian L et al. (2003) SU-8 based deep x-ray lithography/LIGA. Proceedings of SPIE – The International Society for Optical Engineering , 4979 : 394 – 401. Google Scholar
  36. Juang Y-J , Lee LJ , Koelling KW (2002) Hot embossing in microfabrication. Part I: Experimental, Polymer Engineering & Science , 42 (3) : 539 – 550. Google Scholar
  37. Kasahara H et al. (2005) Performances by the electron optical system of low energy electron beam proximity projection lithography tool with a large scanning field. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 23 : 2754 – 2757. CrossRefGoogle Scholar
  38. Kim DS et al. (2006) An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sensors and Actuators B: Chemical , 117 : 488 – 494. CrossRefGoogle Scholar
  39. Kim HS et al. (2006) Low energy electron beam microcolumn lithography. Microelectronic Engineering , 83 : 962 – 967. CrossRefGoogle Scholar
  40. Kim JB , Kim K-S (2005) Novel photobleachable deep UV resists based on single component nonchemically amplified resist system. Macromolecular Rapid Communications , 26 : 1412 – 1417. CrossRefGoogle Scholar
  41. Kim JH et al. (2004) Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor. Sensors and Actuators, B: Chemical , 102 : 241 – 247. CrossRefGoogle Scholar
  42. Klank H , Kutter JP , Geschke O (2002) CO 2 -laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip , 2 : 242 – 246. CrossRefGoogle Scholar
  43. Koba F et al. (2005) EPL performance in 65-nm node metallization technology and beyond. Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Emerging Lithographic Technologies IX , 5751 : 501 – 508. Google Scholar
  44. Kovacs GTA , Maluf NI , Peterson KE (1998) Bulk micromachining of Si. Proceedings of IEEE , 86 : 1536 – 1551. CrossRefGoogle Scholar
  45. Lapicki A et al. (2005) Functionalization of micro-hall effect sensors for biomedical applications utilizing superparamagnetic beads. IEEE Transactions on Magnetics , 41 : 4134 – 4136. CrossRefGoogle Scholar
  46. Lee LJ , Madou MJ , Koelling K , Daunert W , Lai S , Koh S , Juang CG , Lu Y-J , Yu Y (2001) Design and fabrication of CD-like microfluidic platforms for diagnostics: Polymer-based microfabrication. Biomedical Microdevices , 3 : 339 – 351. CrossRefGoogle Scholar
  47. Liu G et al. (2006) Fabrication of 3D photonic crystal by deep x-ray lithography. Proceedings of SPIE – The International Society for Optical Engineering , 6110 : 61100R. Google Scholar
  48. Liu X , Brenner K-H , Wilzbach M , Schwarz M , Fernholz T , Schmiedmayer J (2005) Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography. Applied Optics , 44 : 6857 – 6860. CrossRefGoogle Scholar
  49. Liu X , Du D , Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE Journal of Quantum Electronics , 33 : 1706 – 1716. CrossRefGoogle Scholar
  50. Lutkenhaus JL et al. (2005) Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. Journal of the American Chemical Society , 127 : 17228 – 17234. CrossRefGoogle Scholar
  51. Mardare D et al. (2005) Chromium-doped titanium oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Symposium D: Functional Oxides for Advanced Semiconductor Technologies , 118 : 187 – 191. Google Scholar
  52. Martinsson H et al. (2005) Current status of optical maskless lithography. Journal of Microlithography, Microfabrication and Microsystems , 4 : 1 – 15. CrossRefGoogle Scholar
  53. McGeoch MW (2005) Maskless EUV lithography via optically addressed modulator. Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Emerging Lithographic Technologies IX , 5751 : 349 – 354. Google Scholar
  54. Menon R et al. (2005a) Maskless optical lithography using MEMs-based spatial-light modulators. Progress in Biomedical Optics and Imaging ‱ Proceedings of SPIE, MOEMS Display and Imaging Systems III , 5721 : 53 – 63. Google Scholar
  55. Menon R et al. (2005b) Maskless lithography. Materials Today , 8 : 26 – 33. CrossRefGoogle Scholar
  56. Modi N, Lacy F (2005) Piezoelectric microcantilevers of nanoscale thickness for detection of cells. 2005 NSTI Nanotechnology Conference and Trade Show – NSTI Nanotech 2005 Technical Proceedings, 2005 NSTI Nanotechnology Conference and Trade Show – NSTI Nanotech 2005 Technical Proceedings, 1:501–504. Google Scholar
  57. Myers BD et al. (2006) Variable pressure electron beam lithography (VP-eBL): A new tool for direct patterning of nanometer-scale features on substrates with low electrical conductivity. Nano Letters , 6 : 963 – 968. CrossRefGoogle Scholar
  58. Naulleau P et al. (2005) EUV microexposures at the ALS using the 0.3-NA MET projection optics. Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Emerging Lithographic Technologies IX , 5751 : 56 – 63. Google Scholar
  59. Park S et al. (2005) pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum. Analytical Chemistry , 77 : 7695 – 7701. CrossRefGoogle Scholar
  60. Peterson KE (1982 ) Silicon as a mechanical material. Proceedings of IEEE , 70 : 420 – 457. Quate CF (1997) Scanning probes as a lithography tool for nanostructures. Surface Science , 386 : 259 – 264. CrossRefGoogle Scholar
  61. Rakhshandehroo MR , Weigold JW , Tian WC , Pang SW (1998) Dry etching of Si field emitters and high aspect ratio resonators using an inductively coupled plasma source. Journal of Vacuum Science and Technology B , 16 : 2849 – 2854. CrossRefGoogle Scholar
  62. Resnick DJ , Sreenivasan SV , Willson CG (2005) Step and flash imprint lithography. Materials Today , 8 (2) : 34 – 42. CrossRefGoogle Scholar
  63. Reyntjens S et al. (2001) A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering , 11 : 287 – 300. CrossRefGoogle Scholar
  64. Robert Bosch GmbH (1990, 1991) Trench etch process for a single wafer RIE dry etch reactor, U.S. Patent 4,855,017 and 4,784,720 (1991) and German Patent 4241045C1 (1990). Google Scholar
  65. Rogner A et al. (1992) LIGA technique ‱ What are the new opportunities. Journal of Micromechanics and Microengineering , 2 : 133 – 140. CrossRefGoogle Scholar
  66. Rothschild M (2005) Projection optical lithography. Materials Today , 8 : 18 – 24. CrossRefGoogle Scholar
  67. Salib M , Michaeli A , Lazar A , Bechor H , Settle M , Krauss TF (2005) Photonic crystal fabrication on silicon-on-insulator (SOI) using 248 nm and 193 nm lithography, Proceedings of SPIE – The International Society for Optical Engineering , Nanophotonics for Communication: Materials and Devices II , 6017 : 60170B. Google Scholar
  68. Sayago I et al. (2005) Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals , 148 : 15 – 19. CrossRefGoogle Scholar
  69. Schaffer CB , Brodeur A , Garcia JF , Mazur E (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Optics Letters , 26 (2) : 93 – 95. CrossRefGoogle Scholar
  70. Scheer HC , Schulz H , Lyebyedyev D (2001) Strategies for wafer-scale hot embossing lithography. Proceedings of SPIE , 4349 : 86 – 89. CrossRefGoogle Scholar
  71. Schmidt RH , Haupt K (2005) Molecularly imprinted polymer films with binding properties enhanced by the reaction-induced phase separation of a sacrificial polymeric porogen. Chemistry of Materials , 17 : 1007 – 1016. CrossRefGoogle Scholar
  72. Sewell H et al. (2005) 32 nm node technology development using interference immersion lithography. Progress in Biomedical Optics and Imaging ‱ Proceedings of SPIE, Advances in Resist Technology and Processing XXII , 5753 : 491 – 501. Google Scholar
  73. Silverman PJ (2005) Extreme ultraviolet lithography: Overview and development status. Journal of Microlithography, Microfabrication and Microsystems , 4 : 1 – 5. CrossRefGoogle Scholar
  74. Smardzewski RR et al. (2004) Metal-insulator-metal ensemble (MIME) chemical detectors. 2004 NSTI Nanotechnology Conference and Trade Show ‱ NSTI Nanotech 2004 , 3 : 163 – 164. Google Scholar
  75. Smith BW et al. (2005) 25 nm immersion lithography at a 193 nm wavelength. Proceedings of SPIE – The International Society for Optical Engineering, Optical Microlithography XVIII , 5754 : 141 – 147. Google Scholar
  76. Solak HH (2006) Nanolithography with coherent extreme ultraviolet light. Journal of Physics D: Applied Physics , 39 : R171 – R188. CrossRefGoogle Scholar
  77. Soltys J et al. (2003) Study of tip-induced Ti-film oxidation in atomic force microscopy contact and non-contact mode. Acta Physica Polonica A , 103 : 553 – 558. Google Scholar
  78. Steen SE et al. (2005) Looking into the crystal ball: Future device learning using hybrid E-beam and optical lithography. Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Emerging Lithographic Technologies IX , 5751 : 26 – 34. Google Scholar
  79. Steen S et al. (2006) Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes. Microelectronic Engineering , 83 : 754 – 761. CrossRefGoogle Scholar
  80. Sun L et al. (2006) Preparation and gas-sensing property of a nanosized titania thin film towards alcohol gases. Sensors and Actuators, B: Chemical , 114 : 387 – 391. CrossRefGoogle Scholar
  81. Tachi S , Tsujimoto K , Arai S , Kure T (1991) Low temperature dry etching. Journal of Vacuum Science and Technology B , 9 : 796 – 803. CrossRefGoogle Scholar
  82. Takeno T et al. (2005) Metal-containing diamond-like nanocomposite thin film for advanced temperature sensors , Materials Science Forum. PRICM 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing , 475–479 : 2079 – 2082. Google Scholar
  83. Tanaka Y et al. (2005) Evaluation of pattern fidelity in EUVL using a high-numerical-aperture small-field EUV exposure tool (HiNA). Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Emerging Lithographic Technologies IX , 5751 : 733 – 740. Google Scholar
  84. Tian W-C , Pang SW (2001) Released submicrometer Si microstructures formed by one-step dry etching. Journal of Vacuum Science and Technology B , 19 : 433 – 438. CrossRefGoogle Scholar
  85. Tian W-C , Pang SW (2002) Freestanding microheaters in Si with high aspect ratio microstructures. Journal of Vacuum Science and Technology B , 20 : 1008 – 1012. CrossRefGoogle Scholar
  86. Tian W-C , Pang SW (2003) Thick and thermally isolated Si microheaters for microfabricated preconcentrators. Journal of Vacuum Science and Technology B , 21 : 274 – 279. CrossRefGoogle Scholar
  87. Tian W-C , Weigold JW , Pang SW (2000) Comparison of Cl 2 and F-based dry etching for high aspect ratio Si Microstructures etched with an inductively coupled plasma source. Journal of Vacuum Science and Technology B , 18 : 1890 – 1896. CrossRefGoogle Scholar
  88. Vacuum Science and Technology B, 18:1890–1896.Google Scholar
  89. Ueno H et al. (1999) Study on fabrication of sub-micron structures for MEMS using deep X-ray lithography. Proceedings of the International Symposium on Micro Machine and Human Science, 87–92. Google Scholar
  90. Vainos NA (2004) Laser grown photonic structures. Proceedings of SPIE ‱ The International Society for Optical Engineering , ROMOPTO 2003: Seventh Conference on Optics , 5581 : 1 – 11. Google Scholar
  91. Weber W et al. (2005) Electron beam lithography for nanometer-scale planar double-gate transistors. Microelectronic Engineering, Proceedings of the 30th International Conference on Micro- and Nano-engineering , 78–79 : 206 – 211. Google Scholar
  92. Wensink H, Berenschot JW, Jansen HV, Elwenspoek MC (2000) High resolution powder blast micromachining. Proceedings of IEEE MEMS 2000, Miyazaki, Japan, pp. 769–774. Google Scholar
  93. Yang X (2005) Hybrid exposure strategy: Combining e-beam direct writing with optical lithography for magnetic recording heads. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 23 : 2624 – 2630. CrossRefGoogle Scholar
  94. Yasin S et al. (2005) UVIII for combined e-beam and optical exposure hybrid lithography, Microelectronic Engineering , Proceedings of the 30th International Conference on Micro- and Nano-engineering , 78–79 : 47 – 50. Google Scholar
  95. Zhao G et al. (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO 2 film. Electrochemistry Communications , 7 : 724 – 729. CrossRefGoogle Scholar
  96. Zhao Z et al. (2005) Annealing enhanced hydrogen absorption in nanocrystalline PdAu sensing films. Journal of Applied Physics , 97 : 124301. CrossRefGoogle Scholar
  97. Zlobin VA (2005) Development of electron beam lithography for nanoscale devices , Proceedings of SPIE ‱ The International Society for Optical Engineering, Opto-Ireland 2005: Nanotechnology and Nanophotonics , 5824 : 23 – 32. Google Scholar
  98. Zribi A et al. (2005) Micromachined resonant multiple gas sensor. Sensors and Actuators, A: Physical , 122 : 31 – 38.125134_ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.GE Global Research CenterNiskayunaNY

Personalised recommendations