Advertisement

Growth and Synthesis of Nanostructured Thin Films

  • Yiping Zhao
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Nanostructured thin film (NSTF) is composed of thin layers of nanostructured objects such as nanoparticles, nanorods, nanotubes, nanowires, and nanoporous networks. Fabrication and synthesis of those nanostructured thin films are essential for exploring their properties and creating advanced applications. This chapter gives an overview of a range of synthesis methods for NSTFs, such as thermal vapor transport methods, catalyst-assisted fabrication methods, physical vapor deposition methods, chemical vapor deposition methods, sol–gel methods, diblock copolymer methods, spin coating methods, electrochemical deposition/etching methods, electrospinning methods, and template-based synthesis techniques. In the end, we have detailed an emerging nanofabrication method, the glancing angle deposition method, and its capability to design NSTF with different geometry and compositions.

Keywords

Atomic Layer Deposition Nanorod Array Chemical Vapor Deposition Method Nanorod Structure Nanostructured Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Azzam RMA (1992) Chiral thin solid films: Method of deposition and applications. Appl. Phys. Lett. , 61 : 3118 – 3120.CrossRefGoogle Scholar
  2. Bartlett PN , Baumberg JJ , Coyle S , Abdelsalam ME (2004) Optical properties of nanostructured metal films. Faraday Discuss., 125 : 117 – 132.CrossRefGoogle Scholar
  3. Biswas A , Aktas OC , Schürmann U , Saeed U , Zaporojtchenko V , Faupel F , Strunskus T (2004) Tunable multiple plasmon resonance wavelengths response from multicomponent polymermetal nanocomposite systems. Appl. Phys. Lett. , 84 : 2655 – 2657.CrossRefGoogle Scholar
  4. Biswas A , Marton Z , Kanzow J , Kruse J , Zaporojtchenko V , Faupel F , Strunskus T (2003) Controlled generation of Ni nanoparticles in the capping layers of Teflon AF by vapor-phase tandem evaporation. Nano Lett. , 3 : 69 – 73.CrossRefGoogle Scholar
  5. Caruso RA , Antonietti M (2001) Sol-gel nanocoating: An approach to the preparation of structured materials. Chem. Mater. , 13 : 3272 – 3282.CrossRefGoogle Scholar
  6. Fan JG , Zhao YP (2005) Direct deposition of aligned nanorod array onto cylindrical objects. J. Vac. Sci. Technol. B , 23 : 947 – 953.CrossRefGoogle Scholar
  7. Guarini KW , Black CT , Milkove KR , Sandstrom RL (2001) Nanoscale patterning using self-assembled polymers for semiconductor Applications. J. Vac. Sci. Technol. B , 19 : 2784 – 2788.CrossRefGoogle Scholar
  8. Harrison C , Park M , Chaikin PM , Register RA , Adamson DH (1997) Lithography with a mask of block copolymer microstructures. J. Vac. Sci. Technol. B , 16 : 544 – 552.CrossRefGoogle Scholar
  9. He YP , Fu JX , Zhang Y , Zhao YP , Zhang LJ , Xia AL , Cai JW (2007) Multilayered Si/Ni nanosprings and their magnetic properties. Small , 3 : 153 – 160.CrossRefGoogle Scholar
  10. Huang MH , Wu YY , Feick H , Tran N , Weber E , Yang PD (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. , 13 : 113 – 116.CrossRefGoogle Scholar
  11. Huang ZM , Zhang YZ , Kotaki M , Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci. Technol. , 63 : 2223 – 2253.CrossRefGoogle Scholar
  12. Huczko A (2000) Template-based synthesis of nanomaterials. Appl. Phys. A , 70 : 365 – 376.CrossRefGoogle Scholar
  13. Kiema GK , Jensen MO , Brett MJ (2005) Glancing angle deposition thin film microstructures for microfluidic applications. Chem. Mater. , 17 : 4046 – 4048.CrossRefGoogle Scholar
  14. Kim H (2003) Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. B , 21 : 2231 – 2261.CrossRefGoogle Scholar
  15. Levitt AP (ed.) (1970) Whisker Technology. Wiley , New York.Google Scholar
  16. Li AP , Müller F , Birner A , Nielsch K , Gösele U (1998) Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. , 84 : 6023 – 6026.CrossRefGoogle Scholar
  17. Lieber CM (1998) One-dimensional nanostructures: Chemistry, physics and applications. Solid State Commun. , 107 : 607 – 616.CrossRefGoogle Scholar
  18. Lisfi A , Lodder JC (2001) Magnetic domains in Co thin films obliquely sputtered on a polymer substrate. Phys. Rev. B , 63 : 174441.CrossRefGoogle Scholar
  19. Liu F , Umlor MT , Shen L , Weston J , Eads W , Barnard JA , Mankey GJ (1999) The growth of nanoscale structured iron films by glancing angle deposition. J. Appl. Phys. , 85 : 5486 – 5488.CrossRefGoogle Scholar
  20. Lyu SC , Zhang Y , Ruh H , Lee HJ , Shim HW , Suh EK , Lee CJ (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. , 363 : 134 – 138.CrossRefGoogle Scholar
  21. Malac M , Egerton RF (2001) Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J. Vac. Sci. Technol. , A19 : 158 – 166.Google Scholar
  22. Malac M , Egerton RF , Brett MJ , Dick B (1999) Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B , 17 : 2671 – 2674.CrossRefGoogle Scholar
  23. Martin CR (1994) Nanomaterials: A membrane-based synthesis approach. Science , 266 : 1961 – 1966.CrossRefGoogle Scholar
  24. Masuda H , Yamada H , Satoh M , Asoh H , Nakao M , Tamamura T (1997) Highly ordered nanochannel array architecture in anodic alumina. Appl. Phys. Lett. , 71 : 2770 – 2772.CrossRefGoogle Scholar
  25. Matthews JA , Wnek GE , Simpson DG , Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules , 3 : 232 – 238.CrossRefGoogle Scholar
  26. Messier R , Gehrke T , Frankel C , Venugopal VC , Otaüo W , Lakhtakia A (1997) Engineered sculptured nematic thin films. J. Vac. Sci. Technol. A , 15 : 2148 – 2152.CrossRefGoogle Scholar
  27. Messier R , Venugopal VC , Sunal PD (2000) Origin and evolution of sculptured thin films. J. Vac. Sci. Technol. A , 18 : 1538 – 1545.CrossRefGoogle Scholar
  28. Motohiro T , Taga Y (1989) Thin film retardation plate by oblique deposition. Appl. Opt. , 28 : 2466 – 2482.CrossRefGoogle Scholar
  29. Ng HT , Chen B , Li J , Han J , Meyyappan M , Wu J , Li SX , Haller EE (2003) Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. , 82 : 2023 – 2025.CrossRefGoogle Scholar
  30. Nieuwenhuizen JM , Haanstra HB (1966) Microfractography of thin films. Philips Tech. Rev. , 27 : 87 – 89.Google Scholar
  31. Pomogailo AD (2005) Polymer sol-gel synthesis of hybrid nanocomposites. Colloid J. , 67 : 658 – 677.CrossRefGoogle Scholar
  32. Robbie K , Brett MJ (1997) Sculptured thin films and glancing angle deposition: Growth mechanisms and applications. J. Vac. Sci. Technol. A , 15 : 1460 – 1665.CrossRefGoogle Scholar
  33. Robbie K , Brett MJ , Lakhtakia A (1996) Chiral sculptured thin films. Nature , 384 : 616 – 616.CrossRefGoogle Scholar
  34. Stickney JL (2002) Electrochemical atomic layer epitaxy (EC-ALE): Nanoscale control in the electrodeposition of compound semiconductors. In: Alkire RC , Kolb DM (eds.) Advances in Electrochemical Science and Engineering, Volume 7. Wiley-VCH , Weinheim, Germany.Google Scholar
  35. Theron A , Zussman E , Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology , 12 : 384 – 390.CrossRefGoogle Scholar
  36. Trait RN , Smy T , Brett MJ (1993) Modeling and characterization of columnar growth in evaporated-films. Thin Solid Films , 226 : 196 – 201.CrossRefGoogle Scholar
  37. van Popta AC , Brett MJ , Sit JC (2005) Double-handed circular Bragg phenomena in polygonal helix thin films. J. Appl. Phys. , 98 : 083517.CrossRefGoogle Scholar
  38. Wang ZL (2004) Functional oxide nanobelts: Materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. , 55 : 159 – 196.CrossRefGoogle Scholar
  39. Wei BQ , Vajtai R , Jung Y , Ward J , Zhang Y , Ajayan PM , Ramanath G (2002) Organized assembly of carbon nanotubes. Nature , 416 : 495 – 496.CrossRefGoogle Scholar
  40. Wu YY , Yan HQ , Huang M , Messer B , Song JH , Yang PD (2002) Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chem. Eur. J. , 8 : 1260 – 1268.CrossRefGoogle Scholar
  41. Xia YN , Yang PD , Sun YG , Wu YY , Mayers B , Gates B , Yin YD , Kim F , Yan HQ (2003) Onedimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. , 15 : 353 – 389.CrossRefGoogle Scholar
  42. Yang PD , Yan HQ , Mao S , Russo R , Johnson J , Saykally R , Morris N , Pham J , He RG , Choi HJ (2002) Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. , 12 : 323 – 331.CrossRefGoogle Scholar
  43. Ye DX , Zhao YP , Yang GR , Zhao YG , Wang GC , Lu TM (2002) Manipulating the column tilt angles of nanocolumnar films by glancing angle deposition. Nanotechnology , 13 : 615 – 618.CrossRefGoogle Scholar
  44. Young NO , Kowal J (1959) Optically active fluorite films. Nature , 183 : 104 – 105.CrossRefGoogle Scholar
  45. Zhao YP , Ye DX , Wang GC , Lu TM (2002b) Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. , 2 : 351 – 354.CrossRefGoogle Scholar
  46. Zhao YP , Ye DX , Wang PI , Wang GC , Lu TM (2002a) Fabrication Si nano-columns and square springs on self-assembly colloid substrates. Int. J. Nanosci. , 1 : 87 – 97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Georgia, Department of Physics and AstronomyAthensGA

Personalised recommendations