Transduction Principles

  • Jeffrey FortinEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter presents the most common fundamental transduction principles used in microsensors. Each section provides an overview of the theory and then gives an example of a sensor that uses the transduction principle being described. A classification of measurands is presented as well as the most common transduction techniques including piezoresistance, piezoelectricity, capacitive, resistive, tunneling, thermoelectricity, optical and radiation-based techniques, and electrochemical.


Pressure Sensor Field Effect Transistor Gauge Factor Seebeck Effect Capacitive Pressure Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater. Struct., 6:530–539CrossRefGoogle Scholar
  2. Garcia C, Zhukov A, Zhukova V, Ipatov M, Blanco JM, Gonzalez J (2005) Effect of tensile stresses on GMI of Co-rich amorphous microwires. IEEE Trans. Magnetics, 41 (10):3688–3690CrossRefGoogle Scholar
  3. Gardner JW (1994) Microsensors: Principles and Applications. Wiley, West Sussex, EnglandGoogle Scholar
  4. Han M, Liang DF, Deng LJ (2005) Review paper, sensors development using its unusual properties of Fe/Co-based amorphous soft magnetic wire. J. Mat. Sci., 40:5573–5580CrossRefGoogle Scholar
  5. Halfner E (1969) The piezoelectric crystal unit-definitions and methods of measurement. Proc. IEEE 57, No. 2Google Scholar
  6. Horowitz S, Nishida T, Cattafesta L, Sheplak M (2006) Solid State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June 4, 2006Google Scholar
  7. Humenyuk I, Torbiero B, Assie-Souleille S, Colin R, Dollat X, Franc B, Martinez A, Temple-Boyer P (2006) Development of pNH4-ISFETS microsensors for water analysis. Microelectronics J., 37:475–479CrossRefGoogle Scholar
  8. Janata J (2003) Electrochemical microsensors. Proc. IEEE, 91 (6):864–869CrossRefGoogle Scholar
  9. Ko S, Kim Y, Lee S, Choi S, Kim S (2003) Micromachined piezoelectric membrane acouostic device. Sensors and Actuators A, Physical, 103:130–134CrossRefGoogle Scholar
  10. Liu CH, Kenny TW (2001) A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. MEMS, 10 (3):425–433Google Scholar
  11. Moskovits M (2005) Surface-enhanced Raman spectroscopy–A brief retrospective. J. Raman Spectroscopy, 36 (6/7):485–496CrossRefGoogle Scholar
  12. Norton H (1982) Sensor and Analyzer Handbook. Prentice Hall, NJ, pp. 18–24Google Scholar
  13. Ried R, Kim E, Hong D, Muller R (1993) piezoelectric microphone with on-chip CMOS circuits. J. MEMS, 993 (23):111–120Google Scholar
  14. Royer M, Holmen J, Wurm M, Aadland O (1983) ZnO on Si integrated acoustic sensor. Sensors and Actuators, A: Physical, 4:357–362Google Scholar
  15. Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP (2005) Biological applications of localised surface plasmonic phenomenae. IEE Proc.–Nanobiotechnol., 152(1):13–32CrossRefGoogle Scholar
  16. Sze SM (1994) Semiconductor Sensors. Wiley, New YorkGoogle Scholar
  17. Exceptionally high Young’s modulus observed for individual carbon nanotubes”, Treacy, M.M.J. (NEC Res. Inst., Princeton, NJ, USA); Ebbesen, T.W.; Gibson, J.M., Nature, v 381, n 6584, 20 June 1996, p 678–680Google Scholar
  18. Valentini L, Cantalini C, Armentano I, Kenny JM, Lozzi L, Santucci S (2004) Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond Relat. Mat., 13:1301–1305CrossRefGoogle Scholar
  19. White RM (1987) A sensor classification scheme. IEEE Trans. Ultrason. Ferroelec, Freq. Contr. UFFC- 34:124CrossRefGoogle Scholar
  20. Zribi A, Iorio L, Lewis D (2005) Oil-free stress impedance pressure sensor for harsh environments. IEEE. Vol 2005, p 1275–1277Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.GE Global Research CenterNiskayuna

Personalised recommendations