Skip to main content

Sensor Design Guidelines

  • Chapter
  • First Online:
  • 1024 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter focuses on introducing fundamental design principles of transducers, familiarizing readers who are new to this field with the common vocabulary used in describing transducer performance, and providing a succinct historical background about the implementation of thin films and nanostructures in sensors and analytical instruments. A systematic methodology and a sequence of guiding steps to follow in designing a transducer beginning with a concept, through materials selection, and transducer design and fabrication are presented. These steps are covered in more detail in subsequent chapters with concrete examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcoutlabi M, McKennal GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condensed Matter, 17:R461–R524

    Article  CAS  Google Scholar 

  • Bassani F, Bourg M, Cocchini F (1985) Size effect in the optical properties of small metallic particles: A solvable model for cubic symmetry. Nuovo Cimento D, 5:415–449

    Article  Google Scholar 

  • Calleja M, Nordstrom M, Alvarez M, Tamayo J, Lechuga LM, Boisen A, (2005) Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy, 105 (1–4):215–222

    Google Scholar 

  • Cocchini F, Bassani F, Bourg M () Model calculation of the optical properties of metallic particles in a dielectric medium. Surf. Sci., 156:851–858

    Google Scholar 

  • Coombes CJ (1972) Melting of small particles of lead and indium. J. Phys. F: Met. Phys., 2:441–449

    Article  CAS  Google Scholar 

  • Dingreville R, Qu J, Cherkaoui M (2004) Effective elastic modulus of nano-particles, Proc. 9th Int’l Symp. on Adv. Packaging Mat., pp. 187–192

    Google Scholar 

  • Feynman RP (1959) Plenty of room at the bottom, APS meeting

    Google Scholar 

  • Genzel L, Martin TP, Kreibig U (1975), Dielectric function and plasma resonances of small metal particles, Zeitschrift fur Physik B, 21:339–346

    Article  CAS  Google Scholar 

  • Huang WC, Lue JT (1994) Quantum size effect on the optical properties of small metallic particles. Phys. Rev. B, 49 (24):279–285

    Article  Google Scholar 

  • Jin XC, Degertekin FL, Calmes S, Zhang XJ, Ladabaum I, Khuri-Yakub BT (1998) Micromachined capacitive transducer arrays for medical ultrasoundimaging, Proc. Ultrasonics Symp., 2:1877–1880

    Google Scholar 

  • Kawabata A, Kubo R (1966) Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn, 21:1765–1772

    Article  CAS  Google Scholar 

  • Kuo DMT, Fang A, Chang YC (2001) Theoretical modeling of dark current and photoresponse for quantum well and quantum dot infrared detectors. Infrared Phys. Technol., 42:433–442

    Article  Google Scholar 

  • Lai SL, Carlsson JRA, Allen LH (1998) Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements. Appl. Phys. Lett., 72:1098–1100

    Article  CAS  Google Scholar 

  • Lilleodden ET, Zimmerman JA, Foiles SM, Nix WD (2001) An experimental and computational study of the elastic-plastic transition in thin films. Proc. Mat. Res. Soc. Symp., 673:1.3.1–1.3.6

    Article  Google Scholar 

  • Petersen KE (1982) Si as a mechanical material. Proc. IEEE, 70 (5):420–457

    Article  CAS  Google Scholar 

  • Pozhar LA (2000) Structure and dynamics of nanofluids: Theory and simulations to calculate viscosity. Phys Rev E, 61 (2):1432–1446

    Article  CAS  Google Scholar 

  • Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology, 17:1309–1315

    Article  CAS  Google Scholar 

  • Scaffardi LB, Pellegri N, de Sanctis O, Tocho JO (2005) Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology, 16:158–163

    Article  CAS  Google Scholar 

  • Srikar VT, Spearing SM (2003) Materials selection in micromechanical design: An application of the Ashby approach. J. MEMS, 12 1:3–10

    Google Scholar 

  • Truong V, Courteau P (1987) Optical properties of very fine Al particles: Quantum size effect. J. Appl. Phys., 62 (12):4863–4866

    Article  Google Scholar 

  • Wood DM, Ashcroft NW (1982) Quantum size effects in the optical properties of small metallic particles. Phys. Rev. B, 25:6255–6274

    Article  CAS  Google Scholar 

  • Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys. Rev. B, 62:10548–10557

    Article  CAS  Google Scholar 

  • Zhang Z, Li JC, Jiang Q (2000) Modelling for size-dependent and dimension-dependent melting of nanocrystals. J. Phys. D: Appl. Phys., 33:2653–2656

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Zribi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zribi, A. (2009). Sensor Design Guidelines. In: Zribi, A., Fortin, J. (eds) Functional Thin Films and Nanostructures for Sensors. Integrated Analytical Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68609-7_1

Download citation

Publish with us

Policies and ethics