Advertisement

Qr-Decomposition-Based Rls Filters

  • Paulo S.R. Diniz
Chapter

Keywords

Posteriori Error Information Matrix Systolic Array Householder Transformation Real Time Signal Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, ed 2nd edition, 1989.MATHGoogle Scholar
  2. 2.
    W. H. Gentleman and H. T. Kung, ‘‘Matrix triangularization by systolic arrays,’’ Proc. of SPIE, Real Time Signal ProcessingIV, vol. 298, pp. 19-26, 1981.Google Scholar
  3. 3.
    J. G. McWhirter, ‘‘Recursive least-squares minimization using a systolic array,’’ Proc. of SPIE, Real Time Signal Processing VI, vol. 431, pp. 105-112, 1983.Google Scholar
  4. 4.
    J. M. Cioffi, ‘‘The fast adaptive ROTOR’s RLS algorithm,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, pp. 631-653, April 1990.Google Scholar
  5. 5.
    I. K. Proudler, J. G. McWhirter, and Y. J. Shepherd, ‘‘Fast QRD-based algorithms for least squares linear prediction,’’ Proc. IMA Conference on Mathematics in Signal Processing, Warwick, England, pp. 465-488, Dec. 1988.Google Scholar
  6. 6.
    M. G. Bellanger, ‘‘The FLS-QR algorithm for adaptive filtering,’’ Signal Processing, vol. 17, pp. 291-304, Aug. 1984.Google Scholar
  7. 7.
    M. G. Bellanger and P. A. Regalia, ‘‘The FLS-QR algorithm for adaptive filtering: The case of multichannel signals,’’ Signal Processing, vol. 22, pp. 115-126, March 1991.Google Scholar
  8. 8.
    P. A. Regalia and M. G. Bellanger, ‘‘On the duality between fast QR methods and lattice methods in least squares adaptive filtering,’’ IEEE Trans. on Signal Processing, vol. 39, pp. 879-891, April 1991.Google Scholar
  9. 9.
    J. A. Apolin’ario, Jr., and P. S. R. Diniz, ‘‘A new fast QR algorithm based on a priorierrors,’’ IEEE Signal Processing Letters, vol. 4, pp. 307-309, Nov. 1997.Google Scholar
  10. 10.
    M. D. Miranda and M. Gerken, ‘‘A hybrid QR-lattice least squares algorithm using a priori errors,’’ IEEE Trans. on Signal Processing, vol. 45, pp. 2900-2911, Dec. 1997.Google Scholar
  11. 11.
    A. A. Rontogiannis and S. Theodoridis, ‘‘New fast QR decomposition least squares adaptive algorithms,’’ IEEE Trans. on Signal Processing, vol. 46, pp. 2113-2121, Aug. 1998.Google Scholar
  12. 12.
    J. A. Apolin’ario, Jr., M. G. Siqueira, and P. S. R. Diniz, ‘‘On fast QR algorithm based on backward prediction errors: new result and comparisons,’’ Proc. first IEEE Balkan Conf. on Signal Processing, Communications, Circuits, and Systems, Istanbul, Turkey, pp. 1-4, CDROM, June 2000.Google Scholar
  13. 13.
    C. R.Ward, P. J. Hargrave, and J. G. McWhirter, ‘‘Anovel algorithm and architecture for adaptive digital beamforming,’’ IEEE Trans. on Antennas and Propagation, vol. 34, pp. 338-346, March 1986.Google Scholar
  14. 14.
    Z. Chi, J. Ma, and K. Parhi, ‘‘Hybrid annihilation transformation (HAT) for pipelining QRDbased least-square adaptive filters,’’ IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 48, pp. 661-674, July 2001.Google Scholar
  15. 15.
    C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.Google Scholar
  16. 16.
    W. H. Gentleman, ‘‘Least squares computations by Givens transformations without square roots,’’ Inst. Maths. Applics., vol. 12, pp. 329-336, 1973.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    W. H. Gentleman, ‘‘Error analysis of QR decompositions by Givens transformations,’’ Linear Algebra and its Applications, vol. 10, pp. 189-197, 1975.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    H. Leung and S. Haykin, ‘‘Stability of recursive QRD-LS algorithms using finite-precision systolic array implementation,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 37, pp. 760-763, May 1989.Google Scholar
  19. 19.
    K. J. R. Liu, S.-F. Hsieh, K.Yao, and C.-T. Chiu, ‘‘Dynamic range, stability, and fault-tolerant capability of finite-precision RLS systolic array based on Givens rotations,’’ IEEE Trans. on Circuits and Systems, vol. 38, pp. 625-636, June 1991.Google Scholar
  20. 20.
    P. S. R. Diniz and M. G. Siqueira, ‘‘Fixed-point error analysis of the QR-recursive least squares algorithm,’’ IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, pp. 334-348, May 1995.Google Scholar
  21. 21.
    P. A. Regalia, ‘‘Numerical stability properties of a QR-based fast least squares algorithm,’’ IEEE Trans. on Signal Processing, vol. 41, pp. 2096-2109, June 1993.Google Scholar
  22. 22.
    M. G. Siqueira, P. S. R. Diniz, and A. Alwan, ‘‘Infinite precision analysis of the fast QR-recursive least squares algorithm,’’ Proc. IEEE Intern. Symposium on Circuits and Systems, London, England, pp. 2.293-2.296 , May 1994.Google Scholar
  23. 23.
    P. S. Lewis, ‘‘QR-based algorithms for multichannel adaptive least squares lattice filters,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, pp. 421-432, May 1990.Google Scholar
  24. 24.
    I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, ‘‘Computationally efficient QR decomposition approach to least squares adaptive filtering,’’ IEE Proceedings-Part F, vol. 148, pp. 341-353, Aug. 1991.Google Scholar
  25. 25.
    B. Yang and J. F. Böhme, ‘‘Rotation-based RLS algorithms: Unified derivations, numerical properties, and parallel implementations,’’ IEEE Trans. on Signal Processing, vol. 40, pp. 1151-1166, May 1992.Google Scholar
  26. 26.
    F. Ling, ‘‘Givens rotation based least squares lattice and related algorithms,’’ IEEE Trans. on Signal Processing, vol. 39, pp. 1541-1551, July 1991.Google Scholar
  27. 27.
    M. Shoaib, S. Werner, J. A. Apolin’ario, Jr., and T. I. Laakso, ‘‘Solution to the weight extraction problem in fast QR-decomposition RLS algorithms,’’ Proc. IEEE Intern. Conf. on Acoust., Speech, Signal Processing, Toulouse, France, pp. III-572-III-575, 2006.Google Scholar
  28. 28.
    J. M. Cioffi, ‘‘The fast Householder filters RLS adaptive filter,’’ Proc. IEEE Intern. Conf. on Acoust., Speech, Signal Processing, Albuquerque, NM, pp. 1619-1622, 1990.Google Scholar
  29. 29.
    K. J. R. Liu, S.-F. Hsieh, and K. Yao, ‘‘Systolic block Householder transformation for RLS algorithm with two-level pipelined implementation,’’ IEEE Trans. on Signal Processing, vol. 40, pp. 946-957, April 1992.Google Scholar
  30. 30.
    Z.-S. Liu and J. Li, ‘‘A QR-based least mean squares algorithm for adaptive parameter estimation, ’’IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 45, pp. 321- 329, March 1998.Google Scholar
  31. 31.
    A. Ghirnikar and S. T. Alexander, ‘‘Stable recursive least squares filtering using an inverse QR decomposition,’’ Proc. IEEE Intern. Conf. on Acoust., Speech, Signal Processing,Albuquerque, NM, pp. 1623-1626, 1990.Google Scholar
  32. 32.
    S. T. Alexander and A. Ghirnikar, ‘‘A method for recursive least squares filtering based upon an inverse QR decomposition,’’ IEEE Trans. on Signal Processing, vol. 41, pp. 20-30, Jan. 1993.Google Scholar
  33. 33.
    M. Syed and V. J. Mathews, ‘‘QR-Decomposition based algorithms for adaptive Volterra filtering,’’ IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, pp. 372-382, June 1993.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations