Advertisement

Adaptive Lattice-Based Rls Algorithms

  • Paulo S.R. Diniz
Chapter

Keywords

Prediction Error Posteriori Error Prediction Problem Error Feedback Lattice Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Lee, M. Morf, and B. Friedlander, ‘‘Recursive least squares ladder estimation algorithms,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-29, pp. 627-641, June 1981.Google Scholar
  2. 2.
    B. Friedlander, ‘‘Lattice filters for adaptive processing,’’ Proceedings of the IEEE, vol. 70, pp.829-867, Aug. 1982.Google Scholar
  3. 3.
    F. Ling, D. Manolakis, and J. G. Proakis, ‘‘Numerically robust least-squares lattice-ladder algorithms with direct updating of the reflection coefficients,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 837-845, Aug. 1986.Google Scholar
  4. 4.
    M. Bellanger, Adaptive Digital Filters and Signal Processing, Marcel Dekker, Inc., NewYork, NY, 2nd edition, 2001.Google Scholar
  5. 5.
    S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, 4th edition, 2002.Google Scholar
  6. 6.
    J. G. Proakis, C. M. Rader, F. Ling, and C. L. Nikias, Advanced Digital Signal Processing, MacMillan, NewYork, NY, 1992.Google Scholar
  7. 7.
    C. G. Samson and V. U. Reddy, ‘‘Fixed point error analysis of the normalized ladder algorithm,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-31, pp. 1177-1191, Oct. 1983.Google Scholar
  8. 8.
    R. C. North, J. R. Zeidler, W. H. Ku, and T. R. Albert, ‘‘A floating-point arithmetic error analysis of direct and indirect coefficient updating techniques for adaptive lattice filters,’’ IEEE Trans. on Signal Processing, vol. 41, pp. 1809-1823, May 1993.Google Scholar
  9. 9.
    H. Lev-Ari, T. Kailath, and J. M. Cioffi, ‘‘Least-squares adaptive lattice and transversal filters: A unified geometric theory,’’ IEEE Trans. on Information Theory, vol. IT-30, pp. 222-236, March 1984.Google Scholar
  10. 10.
    J. M. Cioffi, ‘‘An unwindowed RLS adaptive lattice algorithm,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 36, pp. 365-371, March 1988.Google Scholar
  11. 11.
    H. Lev-Ari, K.-F. Chiang, and T. Kailath, ‘‘Constrained-input/constrained-output stability for adaptive RLS lattice filters,’’ IEEE Trans. on Circuits and Systems, vol. 38, pp. 1478-1483, Dec. 1991.Google Scholar
  12. 12.
    V. J. Mathews and Z. Xie, ‘‘Fixed-point error analysis of stochastic gradient adaptive lattice filters,’’ IEEE Trans. on Signal Processing, vol. 31, pp. 70-80, Jan. 1990.Google Scholar
  13. 13.
    M. Reed and B. Liu, ‘‘Analysis of simplified gradient adaptive lattice algorithms using powerof-two quantization,’’ Proc. IEEE Intern. Symp. on Circuits and Systems, New Orleans, LA, pp. 792-795, May 1990.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations