Advertisement

Data-Selective Adaptive Filtering

  • Paulo S.R. Diniz
Chapter

Keywords

Speech Signal Channel Model Convergence Speed Posteriori Error Projection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. C. Schweppe, ‘‘Recursive state estimate: Unknown but bounded errors and system inputs,’’ IEEE Trans. on Automatic Control, vol. 13, pp. 22-28, Feb. 1968.Google Scholar
  2. 2.
    E. Fogel andY. F. Huang, ‘‘On the value of information in system identification - bounded noise case,’’ Automatica, vol. 18, pp. 229-238, March 1982.Google Scholar
  3. 3.
    J. R. Deller, ‘‘Set-membership identification in digital signal processing,’’ IEEE Acoust., Speech, Signal Processing Magazine, vol. 6, pp. 4-20, Oct. 1989.Google Scholar
  4. 4.
    J. R. Deller, M. Nayeri, and S. F. Odeh, ‘‘Least-squares identification with error bounds for real-time signal processing and control,’’ Proceedings of IEEE, vol. 81, pp. 815-849, June 1993.Google Scholar
  5. 5.
    S. Dasgupta and Y.-F. Huang, ‘‘Asymptotically convergent modified recursive least-squares with data dependent updating and forgetting factor for systems with bounded noise,’’ IEEE Trans. on Information Theory, vol. 33, pp. 383-392, May 1987.Google Scholar
  6. 6.
    A. K. Rao and Y.-F. Huang, ‘‘Tracking characteristics of an OBE parameter-estimation algorithm,’’ IEEE Trans. on Signal Processing, vol. 41, pp. 1140-1148, March 1993.Google Scholar
  7. 7.
    S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.-F. Huang, ‘‘Set-membership filtering and a setmembership normalized LMS algorithm with an adaptive step size,’’ IEEE Signal Processing Letters, vol. 5, pp. 111-114, May 1998.Google Scholar
  8. 8.
    S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.-F. Huang, ‘‘Set-membership adaptive equalization and updator-shared implementation for multiple channel communications systems,’’ IEEETrans. on Signal Processing, vol. 46, pp. 2372-2384, Sept. 1998.Google Scholar
  9. 9.
    S. Nagaraj, S. Gollamudi, S. Kapoor, and Y.-F. Huang, ‘‘BEACON: An adaptive set-membership filtering technique with sparse updates,’’ IEEE Trans. on Signal Processing, vol. 47, pp. 2928- 2941, Nov. 1999.Google Scholar
  10. 10.
    P. S. R. Diniz and S. Werner, ‘‘Set-membership binormalized data reusing LMS algorithms,’’ IEEE Trans. on Signal Processing, vol. 51, pp. 124-134, Jan. 2003.Google Scholar
  11. 11.
    S.Werner and P. S. R. Diniz, ‘‘Set-membership affine projection algorithm,’’ IEEE Signal Processing Letters, vol. 8, pp. 231-235, Aug. 2001.Google Scholar
  12. 12.
    A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms and Engineering Applications, Springer, NewYork, NY, 2007.MATHGoogle Scholar
  13. 13.
    J. A. Apolin’ario, M. L. R. de Campos, and P. S. R. Diniz, ‘‘The binormalized data-reusing LMS algorithm,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 3235-3242, Nov. 2000.Google Scholar
  14. 14.
    S. C. Douglas, ‘‘Adaptive filters employing partial updating,’’ IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, pp. 209-216, March 1997.Google Scholar
  15. 15.
    T. Aboulnasr and K. Mayyas, ‘‘Complexity reduction of the NLMS algorithm via selective coefficient updating,’’ IEEE Trans. on Signal Processing, vol. 47, pp. 1421-1427, May 1999.Google Scholar
  16. 16.
    S. C. Douğancçay and O. Tanrikulu, ‘‘Adaptive Filtering algorithms with selective partial updating,’’ IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 762-769, Aug. 2001.Google Scholar
  17. 17.
    S. Werner, M. L. R. de Campos, and P. S. R. Diniz, ‘‘Partial-update NLMS algorithm with data-selective updating,’’ IEEE Trans. on Signal Processing, vol. 52, pp. 938-949, April 2004.Google Scholar
  18. 18.
    S. Werner, M. L. R. de Campos, and P. S. R. Diniz, ‘‘Mean-squared analysis of the partialupdate NLMS algorithm,’’ Brazilian Telecommunications Journal - SBrT, vol. 18, pp. 77-85, June 2003.Google Scholar
  19. 19.
    M. Godavarti and A. O. Hero, III, ‘‘Partial update LMS algorithms,’’ IEEE Trans. on Signal Processing, vol. 53, pp. 2384-2399, July 2005.Google Scholar
  20. 20.
    S.Werner, J. A. Apolin’ario Jr., and P. S. R. Diniz, ‘‘Set-membership proportionate affine projection algorithms,’’ EURASIP- Journal on Audio, Speech, and Music Processing, vol. 2007, pp. 1-10, Article ID 34242, 2007.CrossRefGoogle Scholar
  21. 21.
    S. C. Douğancçay and O. Tanrikulu, ‘‘Selective-partial-update NLMS and affine projection algorithms for acoustic echo cancellation,’’ Proc. IEEE Intern. Conf. on Acoust. Speech and Signal Processing, Istanbul, Turkey, pp. 448-451, June 2000.Google Scholar
  22. 22.
    P. S. R. Diniz, R. P. Braga, and S.Werner, ‘‘Set-membership affine projection algorithm for echo cancellation,’’ Proc. IEEE Intern. Symposium on Circuits and Systems, Island of Kos, Greece, pp. 405-408, May 2006.Google Scholar
  23. 23.
    S. Werner, P. S. R. Diniz, and J. E. W. Moreira, ‘‘Set-membership affine projection algorithm with variable data-reuse factor,’’ Proc. IEEE Intern. Symposium on Circuits and Systems, Island of Kos, Greece, pp. 261-264, May 2006.Google Scholar
  24. 24.
    L. Guo and Y.-F. Huang, ‘‘Set-membership adaptive filtering with parameter-dependent error bound tuning,’’ Proc. IEEE Intern. Conf. on Acoust. Speech and Signal Processing, Philadelphia, PA, pp. IV-369 - IV-372, May 2005.Google Scholar
  25. 25.
    J. F. Galdino, J. A. Apolin’ario, Jr., and M. L. R. de Campos, ‘‘Aset-membershipNLMSalgorithm with time-varying error bound,’’ Proc. IEEE Intern. Symposium on Circuits and Systems, Island of Kos, Greece, pp. 277-280, May 2006.Google Scholar
  26. 26.
    R. C. de Lamare and P. S. R. Diniz, ‘‘Set-membership adaptive algorithms based on time-varying error bounds for DS-CDMA systems,’’ Proc. IEEE Intern. Symposium on Circuits and Systems, Island of Kos, Greece, pp. 3466-3469, May 2006.Google Scholar
  27. 27.
    R. C. de Lamare and P. S. R. Diniz, ‘‘Blind constrained set-membership algorithms with timevarying bounds for CDMA interference suppression,’’ Proc. IEEE Intern. Conf. on Acoust. Speech and Signal Processing, Toulouse, France, pp. IV-617 - IV-620, May 2006.Google Scholar
  28. 28.
    R. C. de Lamare and P. S. R. Diniz, ‘‘Set-membership adaptive algorithms based on timevarying error bounds and their application to interference suppression,’’ IEEE International Telecommunications Symposium, Fortaleza, Brazil, pp. 563-567, Sept. 2006.Google Scholar
  29. 29.
    E. Hánsler and G. Schmidt, Acoustics Echo and Noise Control: A Practical Approach, John Wiley & Sons, Hoboken, NJ, 2004.CrossRefGoogle Scholar
  30. 30.
    J. Benesty, T. Gánsler, D. R. Morgan, M. M. Sondhi, and S. L. Gay, Advances in Network and Acoustics Echo Cancellation, Springer-Verlag, Berlin, Germany, 2001.Google Scholar
  31. 31.
    International Telecommunication Union, ITU-T G.168 Standard for Digital Network Echo Cancellers, June 2002.Google Scholar
  32. 32.
    J. G. Proakis, Digital Communications, McGraw Hill, NewYork, NY, 4th edition, 2001.Google Scholar
  33. 33.
    M. C. Jeruchim, P. Balaban, and K. San Shanmugan, Simulation of Communication Systems: Modeling Methodology and Techniques, Kluwer Academic Publishers, Norwell, MA, 2nd edition, 2000.Google Scholar
  34. 34.
    European Telecommunications Standards Institute, UMTS, technical report TR 101 112 V3.2.0, 1998-04.Google Scholar
  35. 35.
    E. H. Dinan and B. Jabbari, ‘‘Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,’’ IEEE Communications Magazine, vol. 36, pp. 48-58, Sep. 1998.Google Scholar
  36. 36.
    J. I. Smith, ‘‘Computer generated multipath fading simulation for mobile radio,’’ IEEE Trans. on Vehicular Technology, vol. 24, pp. 39-40, Aug. 1975.Google Scholar
  37. 37.
    T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 2002.Google Scholar
  38. 38.
    P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto, Digital Signal Processing: System Analysis and Design, Cambridge University Press, Cambridge, UK, 2002.Google Scholar
  39. 39.
    S. Werner, J. A. Apolinário Jr., M. L. R. de Campos, and P. S. R. Diniz, ‘‘Low-complexity constrained affine-projection algorithms,’’ IEEE Trans. on Signal Processing, vol. 53, pp. 4545-4555, Dec. 2005.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations