Advertisement

Lms-Based Algorithms

  • Paulo S.R. Diniz
Chapter

Keywords

Input Signal Convergence Speed Posteriori Error Projection Algorithm Convergence Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. C. M. Claasen and W. F. G. Mecklenbr\äuker, ‘‘Comparison of the convergence of two algorithms for adaptive FIR filters,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-29, pp. 670-678, June 1981.Google Scholar
  2. 2.
    N. A. M. Verhoeckx and T. A. C. M. Claasen, ‘‘Some considerations on the design of adaptive digital filters equipped with the sign algorithm,’’ IEEE Trans. on Communications, vol. COM-32, pp. 258-266, March 1984.Google Scholar
  3. 3.
    N. J. Bershad, ‘‘Comments on ‘Comparison of the convergence of two algorithms for adaptive FIR digital filters’,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-33, pp. 1604-1606, Dec. 1985.Google Scholar
  4. 4.
    P. Xue and B. Liu, ‘‘Adaptive equalizer using finite-bit power-of-two quantizer,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 1603-1611, Dec. 1986.Google Scholar
  5. 5.
    V. J. Mathews and S. H. Cho, ‘‘Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol.ASSP-35, pp. 450-454, April 1987.Google Scholar
  6. 6.
    W.A. Sethares and C. R. Johnson, Jr., ‘‘Acomparison of two quantized state adaptive algorithms,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-37, pp. 138-143, Jan. 1989.Google Scholar
  7. 7.
    V. J. Mathews, ‘‘Performance analysis of adaptive filters equipped dual sign algorithm,’’ IEEE Trans. on Signal Processing, vol. 39, pp. 85-91, Jan. 1991.Google Scholar
  8. 8.
    E. Eweda, ‘‘Convergence analysis and design of an adaptive filter with finite-bit power-of-two quantizer error,’’ IEEE Trans. on Circuits and Systems II : Analog and Digital Signal Processing, vol. 39, pp. 113-115, Feb. 1992.Google Scholar
  9. 9.
    W. A. Sethares, I. M. X. Mareels, B. D. O. Anderson, C. R. Johnson, Jr., and R. R. Bitmead, ‘‘Excitation conditions for signed regressor least mean square adaptation,’’ IEEE Trans. on Circuits and Systems, vol. 35, pp. 613-624, June 1988.Google Scholar
  10. 10.
    S. H. Cho and V. J. Mathews, ‘‘Tracking analysis of the sign algorithm in nonstationary environments,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, pp. 2046-2057, Dec. 1990.Google Scholar
  11. 11.
    J. C. M. Bermudez and N. J. Bershad, ‘‘A nonlinear analytical model for the quantized LMS algorithm: The arbitrary step size case,’’ IEEE Trans. on Signal Processing, vol. 44, pp. 1175-1183, May 1996.Google Scholar
  12. 12.
    S. S. Narayan, A. M. Peterson, and M. J. Narasimha, ‘‘Transform domain LMS algorithm,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-31, pp. 609-615, June 1983.Google Scholar
  13. 13.
    D. F. Marshall, W. K. Jenkins, and J. J. Murphy, ‘‘The use of orthogonal transform for improving performance of adaptive filters, ’’ IEEE Trans. on Circuits and Systems, vol. 36, pp. 474-484, April 1989Google Scholar
  14. 14.
    J. C. Lee and C. K. Un, ‘‘Performance of transform-domain LMS adaptive digital filters,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 499-510, June 1986.Google Scholar
  15. 15.
    F. F. Yassa, ‘‘Optimality in the choice of convergence factor for gradient based adaptive algorithms,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-35, pp. 48-59, Jan. 1987.Google Scholar
  16. 16.
    B.Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.MATHGoogle Scholar
  17. 17.
    P. S. R. Diniz and L.W. Biscainho, ‘‘Optimal variable step size for the LMS/Newton algorithm with application to subband adaptive filtering,’’ IEEE Trans. on Signal Processing, vol. SP-40, pp. 2825-2829, Nov. 1992.Google Scholar
  18. 18.
    S. Roy and J. J. Shynk, ‘‘Analysis of the data-reusing LMS algorithm,’’ Proc. Midwest Symposium on Circuits and Systems, Urbana, IL, pp. 1127-1130, Aug. 1989.Google Scholar
  19. 19.
    K. Ozeki and T. Umeda, ‘‘An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties,’’ Electronics and Communications in Japan, vol. 67-A, pp. 19-27, 1984.MathSciNetGoogle Scholar
  20. 20.
    S. L. Gay and S. Tavathia, ‘‘The fast affine projection algorithm,’’ Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Processing, Detroit, MI, pp. 3023-3026, May 1995.Google Scholar
  21. 21.
    J. A. Apolinário, M. L. R. de Campos, and P. S. R. Diniz, ‘‘The binormalized data-reusing LMS algorithm,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 3235-3242, Nov. 2000.Google Scholar
  22. 22.
    R. A. Soni, K. A. Gallivan, and W. K. Jenkins, ‘‘Low-complexity data-reusing methods in adaptive filtering,’’ IEEE Trans. on Signal Processing, vol. 52, pp. 394-405, Feb. 2004.Google Scholar
  23. 23.
    S. G. Sankaran and A. A. (Louis) Beex, ‘‘Convergence behavior of affine projection algorithms,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 1086-1096, April 2000.Google Scholar
  24. 24.
    S.Werner and P. S. R. Diniz, ‘‘Set-membership affine projection algorithm,’’ IEEE Signal Processing Letters, vol. 8, pp. 231-235, Aug 2001.Google Scholar
  25. 25.
    G.-O. Glentis, K. Berberidis, and S. Theodoridis, ‘‘Efficient least squares adaptive algorithms for FIR transversal filtering,’’ IEEE Signal Processing Magazine, vol. 16, pp. 13-41, July 1999.Google Scholar
  26. 26.
    N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech and Video, Prentice Hall, Englewood Cliffs, NJ, 1984.Google Scholar
  27. 27.
    R. Price, ‘‘A useful theorem for nonlinear devices having Gaussian inputs,’’ IRE Trans. on Information Theory, vol. IT-4, pp. 69-72, June 1958.Google Scholar
  28. 28.
    A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edition, McGraw-Hill, NewYork, NY, 1991.Google Scholar
  29. 29.
    H. Samueli, B. Daneshrad, R. B. Joshi, B. C. Wong, and H. T. Nicholas, III, ‘‘A 64-tap CMOS echo canceller/decision feedback equalizer for 2B1Q HDSL ,’’ IEEE Journal on Selected Areas in Communications, vol. 9, pp. 839-847, Aug. 1991.Google Scholar
  30. 30.
    C. R. Johnson, Jr., Lectures on Adaptive Parameter Estimation, Prentice Hall, Englewood Cliffs, NJ, 1988.MATHGoogle Scholar
  31. 31.
    D. T. Slock, ‘‘On the convergence behavior of the LMS and normalized LMS algorithms,’’ IEEE Trans. on Signal Processing, vol. 40, pp. 2811-2825, Sept. 1993.Google Scholar
  32. 32.
    N. J. Bershad, ‘‘Analysis of the normalized LMS algorithm with Gaussian inputs,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 793-806, Aug. 1986.Google Scholar
  33. 33.
    M. Tarrab and A. Feuer, ‘‘Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data,’’ IEEE Trans. on Information Theory, vol. IT-34, pp. 680-691, July 1988.Google Scholar
  34. 34.
    J. F. Doherty, ‘‘An adaptive algorithm for stable decision-feedback filtering,’’ IEEE Trans. on Circuits and Systems–II: Analog and Digital Signal Processing, vol. 40, pp. 1-8, Jan. 1993.Google Scholar
  35. 35.
    W. B. Mikhael, F. H. Fu, L. G. Kazovsky, G. S. Kang, and L. J. Fransen, ‘‘Adaptive filter with individual adaptation of parameters,’’ IEEE Trans. on Circuits and Systems, vol. 33, pp. 677-686, July 1986.Google Scholar
  36. 36.
    R.W. Harris, D. M. Chabries, and F. A. Bishop, ‘‘A variable step (VS) adaptive filter algorithm,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 309-316, April 1986.Google Scholar
  37. 37.
    C. S. Modlin and J. M. Cioffi, ‘‘A fast decision feedback LMS algorithm using multiple step sizes,’’ Proc. IEEE Inter. Conf. on Communications, New Orleans, pp. 1201-1205, May 1994.Google Scholar
  38. 38.
    S. D. Peters and A. Antoniou, ‘‘Environment estimation for enhanced NLMS adaptation,’’ Proc. IEEE Pac. Rim Conf. on Comm., Comp. and Sig. Proc., Victoria, Canada, pp. 342-345, May 1993.Google Scholar
  39. 39.
    P. S. R. Diniz, M. L. R. de Campos, and A. Antoniou, ‘‘Analysis of LMS-Newton adaptive filtering algorithms with variable convergence factor,’’ IEEE Trans. on Signal Processing, vol. 43, pp. 617-627, March 1995.Google Scholar
  40. 40.
    D. F. Marshall and W. K. Jenkins, ‘‘A fast quasi-Newton adaptive filtering algorithm,’’ IEEE Trans. on Signal Processing, vol. 40, pp. 1652-1662, July 1993.Google Scholar
  41. 41.
    G.V. Moustakides and S. Theodoridis, ‘‘Fast Newton transversal filters - A new class of adaptive estimation algorithm,’’ IEEE Trans. on Signal Processing, vol. 39, pp. 2184-2193, Oct. 1991.Google Scholar
  42. 42.
    J. J. Shynk, ‘‘Frequency-domain and multirate adaptive filtering," IEEE Signal Processing Magazine, vol. 9, pp. 15-37, Jan. 1992.Google Scholar
  43. 43.
    M. R. Petraglia and S. K. Mitra,‘‘Adaptive FIR filter structure based on the generalized subband decomposition of FIR filters,’’ IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, pp. 354-362, June 1993.Google Scholar
  44. 44.
    A. H. Sayed and M. Rupp, ‘‘Error-energy bounds for adaptive gradient algorithms,’’ IEEE Trans. on Signal Processing, vol. 44, pp. 1982-1989, August 1996.Google Scholar
  45. 45.
    N. R.Yousef and A. H. Sayed, ‘‘A unified approach to the steady-state and tracking analyses of adaptive filters,’’ IEEE Trans. on Signal Processing, vol. 49, pp. 314-324, Feb. 2001.Google Scholar
  46. 46.
    T.Y. Al-Naffouri and A. H. Sayed, ‘‘Transient analysis of adaptive filters with error nonlinearities,’’ IEEE Trans. on Signal Processing, vol. 51, pp. 653-663, March 2003.Google Scholar
  47. 47.
    H.-C. Shin and A. H. Sayed, ‘‘Mean-square performance of a family of affine projection algorithms,’’ IEEE Trans. on Signal Processing, vol. 52, pp. 90-102, Jan. 2004.Google Scholar
  48. 48.
    A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons, Hoboken, NJ, 2003.Google Scholar
  49. 49.
    M. L. R. de Campos and A. Antoniou, ‘‘A new quasi-Newton adaptive filtering algorithm,’’ IEEE Trans. on Circuits and Systems–II: Analog and Digital Signal Processing, vol. 44, pp. 924-934, Nov. 1997.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations