Advertisement

The Least-Mean-Square (LMS) Algorithm

  • Paulo S.R. Diniz
Chapter

Keywords

Input Signal Impulse Response Gaussian White Noise Quadrature Amplitude Modulation Convergence Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Widrow and M. E. Hoff, ‘‘Adaptive switching circuits,’’ WESCOM Conv. Rec., pt. 4, pp. 96-140, 1960.Google Scholar
  2. 2.
    B.Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, Jr., ‘‘Stationary and nonstationary learning characteristics of the LMS adaptive filters,’’ Proceedings of the IEEE, vol. 64, pp. 1151-1162, Aug. 1976.Google Scholar
  3. 3.
    G. Ungerboeck, ‘‘Theory on the speed of convergence in adaptive equalizers for digital communication,’’ IBM Journal on Research and Development, vol. 16, pp. 546-555, Nov. 1972.Google Scholar
  4. 4.
    J. E. Mazo, ‘‘On the independence theory of equalizer convergence,’’ The Bell System Technical Journal, vol. 58, pp. 963-993, May 1979.Google Scholar
  5. 5.
    B.Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.MATHGoogle Scholar
  6. 6.
    S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, 4th edition, 2002.Google Scholar
  7. 7.
    M. G. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, Inc., NewYork, NY, 2nd edition, 2001.Google Scholar
  8. 8.
    D. C. Farden, ‘‘Tracking properties of adaptive signal processing algorithms,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-29, pp. 439-446, June 1981.Google Scholar
  9. 9.
    B.Widrow and E.Walach, ‘‘On the statistical efficiency of theLMSalgorithm with nonstationary inputs,’’ IEEE Trans. on Information Theory, vol. IT-30, pp. 211-221, March 1984.Google Scholar
  10. 10.
    O. Macchi, ‘‘Optimization of adaptive identification for time varying filters,’’ IEEE Trans. on Automatic Control, vol. AC-31, pp. 283-287, March 1986.Google Scholar
  11. 11.
    A. Benveniste, ‘‘Design of adaptive algorithms for the tracking of time varying systems,’’ Int. J. Adaptive Control and Signal Processing, vol. 1, pp. 3-29, Jan. 1987.Google Scholar
  12. 12.
    W. A. Gardner, ‘‘Nonstationary learning characteristics of the LMS algorithm,’’ IEEE Trans. on Circuits and Systems, vol. CAS-34, pp. 1199-1207, Oct. 1987.Google Scholar
  13. 13.
    A. Papoulis, Probability, RandomVariables, and Stochastic Processes, McGrawHill, NewYork, NY, 3rd edition, 1991.Google Scholar
  14. 14.
    F. J. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, vol. 2, NewYork, NY, 1964.Google Scholar
  15. 15.
    G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, 3rd edition, 1996.MATHGoogle Scholar
  16. 16.
    V. Solo, ‘‘The limiting behavior of LMS,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol-37, pp. 1909-1922, Dec. 1989.Google Scholar
  17. 17.
    N. J. Bershad and O. M. Macchi, ‘‘Adaptive recovery of a chirped sinusoid in noise, Part 2: Performance of the LMS algorithm,’’ IEEE Trans. on Signal Processing, vol. 39, pp. 595-602, March 1991.Google Scholar
  18. 18.
    D. H. Brandwood, ‘‘A complex gradient operator and its application in adaptive array theory,’’ IEE Proceedings Parts F and G, vol. 130, pp. 11-16, Feb. 1983.Google Scholar
  19. 19.
    A. Hjørungnes and D. Gesbert, ‘‘Complex-valued matrix differentiation: Techniques and key results,’’ IEEE Trans. on Signal Processing, vol. 55, pp. 2740-2746, June 2007.Google Scholar
  20. 20.
    D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing, McGraw Hill, NewYork, NY, 2000.Google Scholar
  21. 21.
    V. H. Nascimento and A. H. Sayed, ‘‘On the learning mechanism of adaptive filters,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 1609-1625, June 2000.Google Scholar
  22. 22.
    O. Macchi and E. Eweda, ‘‘Second-order convergence analysis of stochastic adaptive linear filter,’’ IEEE Trans. on Automatic Control, vol. AC-28, pp. 76-85, March 1983.Google Scholar
  23. 23.
    S. Florian and A. Feuer, ‘‘Performance analysis of the LMS algorithm with a tapped delay line (two-dimensional case),’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 1542-1549, Dec. 1986.Google Scholar
  24. 24.
    O. L. Frost III, ‘‘An algorithm for linearly constrained adaptive array processing,’’ Proceedings of the IEEE, vol. 60, pp. 926-935, Aug. 1972.Google Scholar
  25. 25.
    J. A. Apolinário Jr., S. Werner, T. I. Laakso, and P. S. R. Diniz, ‘‘Constrained normalized adaptive filtering for CDMA mobile communications,’’ Proc. 1998 EUSIPCO-European Signal Processing Conference, Rhodes, Greece, pp. 2053-2056, Sept. 1998.Google Scholar
  26. 26.
    J. A. Apolinário Jr., M. L. R. de Campos, and C. P. Bernal O., ‘‘The Constrained conjugategradient algorithm,’’ IEEE Signal Processing Letters, vol. 7, pp. 351-354, Dec. 2000.Google Scholar
  27. 27.
    M. L. R. de Campos, S. Werner, and J. A. Apolinário, Jr., ‘‘Constrained adaptation algorithms employing Householder transformation,’’ IEEE Transactions on Signal Processing, vol. 50, pp. 2187-2195, Sept. 2002.Google Scholar
  28. 28.
    A. Feuer and E. Weinstein, ‘‘Convergence analysis of LMS filters with uncorrelated Gaussian data,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-33, pp. 222-230, Feb. 1985.Google Scholar
  29. 29.
    D. T. Slock, ‘‘On the convergence behavior of the LMS and normalized LMS algorithms,’’ IEEE Trans. on Signal Processing, vol. 40, pp. 2811-2825, Sept. 1993.Google Scholar
  30. 30.
    W. A. Sethares, D. A. Lawrence, C. R. Johnson, Jr., and R. R. Bitmead, ‘‘Parameter drift in LMS adaptive filters,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 868-878, Aug. 1986.Google Scholar
  31. 31.
    S. C. Douglas, ‘‘Exact expectation analysis of the LMS adaptive filter,’’ IEEE Trans. on Signal Processing, vol. 43, pp. 2863-2871, Dec. 1995.Google Scholar
  32. 32.
    H. J. Butterweck, ‘‘Iterative analysis of the state-space weight fluctuations in LMS-type adaptive filters,’’ IEEE Trans. on Signal Processing, vol. 47, pp. 2558-2561, Sept. 1999.Google Scholar
  33. 33.
    B. Hassibi, A. H. Sayed, and T. Kailath, ‘‘H optimality of the LMS Algorithm,’’ IEEE Trans. on Signal Processing, vol. 44, pp. 267-280, Feb. 1996.Google Scholar
  34. 34.
    O. J. Tobias, J. C. M. Bermudez, and N. J. Bershad, ‘‘Mean weight behavior of the filtered-X LMS algorithm,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 1061-1075, April 2000.Google Scholar
  35. 35.
    V. Solo, ‘‘The error variance of LMS with time varying weights,’’ IEEE Trans. on Signal Processing, vol. 40, pp. 803-813, April 1992.Google Scholar
  36. 36.
    S. U. Qureshi, ‘‘Adaptive Equalization,’’ Proceedings of the IEEE, vol-73, pp. 1349-1387, Sept. 1985.Google Scholar
  37. 37.
    M. L. Honig, ‘‘Echo cancellation of voiceband data signals using recursive least squares and stochastic gradient algorithms,’’ IEEE Trans. on Communications, vol. COM-33, pp. 65-73, Jan. 1985.Google Scholar
  38. 38.
    V. H. Nascimento and J. C. M. Bermudez, ‘‘Probability of divergence for the least-mean fourth algorithm,’’ IEEE Trans. on Signal Processing, vol. 54, pp. 1376-1385, April 2006.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations